287 lines
9.4 KiB
Python
Raw Normal View History

2023-11-29 14:07:47 +08:00
import os
import json
from typing import List, Iterable
import openai
from devchat._cli.utils import init_dir
2023-11-30 08:42:37 +08:00
from devchat.engine.recursive_prompter import RecursivePrompter
2023-11-30 15:23:05 +08:00
from devchat.openai.openai_chat import OpenAIChatConfig
2023-11-29 14:07:47 +08:00
from .namespace import Namespace
from .command_parser import CommandParser, Command
from .command_runner import CommandRunner
def _load_command(command: str):
_, user_chat_dir = init_dir()
workflows_dir = os.path.join(user_chat_dir, 'workflows')
if not os.path.exists(workflows_dir):
return None
if not os.path.isdir(workflows_dir):
return None
namespace = Namespace(workflows_dir)
commander = CommandParser(namespace)
cmd = commander.parse(command)
if not cmd:
return None
return cmd
def _load_commands() -> List[Command]:
_, user_chat_dir = init_dir()
workflows_dir = os.path.join(user_chat_dir, 'workflows')
if not os.path.exists(workflows_dir):
2023-12-02 23:19:00 +08:00
return []
2023-11-29 14:07:47 +08:00
if not os.path.isdir(workflows_dir):
2023-12-02 23:19:00 +08:00
return []
2023-11-29 14:07:47 +08:00
namespace = Namespace(workflows_dir)
commander = CommandParser(namespace)
command_names = namespace.list_names("", True)
commands = []
for name in command_names:
cmd = commander.parse(name)
if not cmd:
continue
commands.append((name, cmd))
return commands
def _create_tool(command_name:str, command: Command) -> dict:
properties = {}
required = []
if command.parameters:
for key, value in command.parameters.items():
properties[key] = {}
for key1, value1 in value.dict().items():
if key1 not in ['type', 'description', 'enum'] or value1 is None:
continue
properties[key][key1] = value1
required.append(key)
elif command.steps[0]['run'].find('$input') > 0:
properties['input'] = {
"type": "string",
"description": "input text"
}
required.append('input')
2023-12-06 20:39:57 +08:00
command_name = command_name.replace('.', '---')
2023-11-29 14:07:47 +08:00
return {
"type": "function",
"function": {
"name": command_name,
"description": command.description,
"parameters": {
"type": "object",
"properties": properties,
"required": required,
},
}
}
def _create_tools() -> List[dict]:
commands = _load_commands()
return [_create_tool(command[0], command[1]) for command in commands if command[1].steps]
2023-11-30 15:23:05 +08:00
def _call_gpt(
openai_config: OpenAIChatConfig,
messages: List[dict], # messages passed to GPT
model_name: str, # GPT model name
use_function_calling: bool) -> dict: # whether to use function calling
2023-11-29 14:07:47 +08:00
client = openai.OpenAI(
api_key=os.environ.get("OPENAI_API_KEY", None),
base_url=os.environ.get("OPENAI_API_BASE", None)
)
2023-12-02 23:19:00 +08:00
tools_functions = _create_tools()
tools = {} if not use_function_calling or not tools_functions else {"tools": tools_functions}
2023-11-30 15:23:05 +08:00
config_params = openai_config.dict(exclude_unset=True)
config_params.pop('stream', None)
config_params.pop('user', None)
config_params.pop('request_timeout', None)
config_params.pop('model', None)
2023-11-29 14:07:47 +08:00
for try_times in range(3):
try:
response: Iterable = client.chat.completions.create(
messages=messages,
model=model_name,
stream=True,
2023-11-30 15:23:05 +08:00
**config_params,
2023-11-30 08:42:37 +08:00
**tools
2023-11-29 14:07:47 +08:00
)
response_result = {'content': None, 'function_name': None, 'parameters': ""}
for chunk in response: # pylint: disable=E1133
chunk = chunk.dict()
delta = chunk["choices"][0]["delta"]
if 'tool_calls' in delta and delta['tool_calls']:
tool_call = delta['tool_calls'][0]['function']
if tool_call.get('name', None):
2023-12-06 20:39:57 +08:00
response_result["function_name"] = tool_call["name"].replace('---', '.')
2023-11-29 14:07:47 +08:00
if tool_call.get("arguments", None):
response_result["parameters"] += tool_call["arguments"]
if delta.get('content', None):
if response_result["content"]:
response_result["content"] += delta["content"]
else:
response_result["content"] = delta["content"]
print(delta["content"], end='', flush=True)
if response_result["function_name"]:
print("``` command_run")
function_call = {
'name': response_result["function_name"],
'arguments': response_result["parameters"]}
print(json.dumps(function_call, indent=4))
print("```", flush=True)
return response_result
except (ConnectionError, openai.APIConnectionError) as err:
if try_times == 2:
print("Connect Exception:", err)
print(err.strerror)
return {'content': None, 'function_name': None, 'parameters': ""}
continue
except Exception as err:
print("Exception Error:", err)
return {'content': None, 'function_name': None, 'parameters': ""}
return {'content': None, 'function_name': None, 'parameters': ""}
def _create_messages():
return []
def _call_function(function_name: str, parameters: str, model_name: str):
"""
call function by function_name and parameters
"""
parameters = json.loads(parameters)
command_obj = _load_command(function_name)
runner = CommandRunner(model_name)
return runner.run_command_with_parameters(function_name, command_obj, parameters, "", [])
2023-11-29 14:07:47 +08:00
2023-11-30 15:23:05 +08:00
def _auto_function_calling(
openai_config: OpenAIChatConfig,
history_messages: List[dict],
model_name:str):
2023-11-29 14:07:47 +08:00
"""
通过function calling方式来回答当前问题
function最多被调用4次必须进行最终答复
"""
function_call_times = 0
2023-11-30 15:23:05 +08:00
response = _call_gpt(openai_config, history_messages, model_name, True)
2023-11-29 14:07:47 +08:00
while True:
if response['function_name']:
# run function
function_call_times += 1
print("do function calling", end='\n\n', flush=True)
function_result = _call_function(
response['function_name'],
response['parameters'],
model_name)
history_messages.append({
'role': 'function',
'content': f'exit code: {function_result[0]} stdout: {function_result[1]}',
'name': response['function_name']})
print("after functon call.", end='\n\n', flush=True)
# send function result to gpt
if function_call_times < 5:
2023-11-30 15:23:05 +08:00
response = _call_gpt(openai_config, history_messages, model_name, True)
2023-11-29 14:07:47 +08:00
else:
2023-11-30 15:23:05 +08:00
response = _call_gpt(openai_config, history_messages, model_name, False)
2023-11-29 14:07:47 +08:00
else:
return response
2023-11-30 15:23:05 +08:00
def _auto_route(openai_config: OpenAIChatConfig, history_messages, model_name:str):
2023-11-29 14:07:47 +08:00
"""
select which command to run
"""
2023-11-30 15:23:05 +08:00
response = _call_gpt(openai_config, history_messages, model_name, True)
2023-11-29 14:07:47 +08:00
if response['function_name']:
return _call_function(
response['function_name'],
response['parameters'],
model_name)
if response['content']:
return (0, response['content'])
return (-1, "")
2023-11-30 15:23:05 +08:00
def _run_prompt_command(
openai_config: OpenAIChatConfig,
command_name: str,
history_messages,
model_name:str):
"""
run prompt command
2023-11-30 08:42:37 +08:00
"""
_, user_chat_dir = init_dir()
workflows_dir = os.path.join(user_chat_dir, 'workflows')
if not os.path.exists(workflows_dir):
return None
if not os.path.isdir(workflows_dir):
return None
namespace = Namespace(workflows_dir)
prompter = RecursivePrompter(namespace)
command_prompts = prompter.run(command_name)
history_messages.append({
2023-11-30 15:23:05 +08:00
'role': 'system',
'content': command_prompts})
2023-11-30 08:42:37 +08:00
2023-11-30 15:23:05 +08:00
response = _call_gpt(openai_config, history_messages, model_name, False)
2023-11-30 08:42:37 +08:00
if response['content']:
return (0, response['content'])
return (-1, "")
2023-11-29 14:07:47 +08:00
def run_command(
2023-11-30 15:23:05 +08:00
openai_config: OpenAIChatConfig,
2023-11-29 14:07:47 +08:00
model_name: str,
history_messages: List[dict],
input_text: str,
parent_hash: str,
context_contents: List[str],
auto_fun: bool):
"""
load command config, and then run Command
"""
# split input_text by ' ','\n','\t'
if len(input_text.strip()) == 0:
return None
if input_text.strip()[:1] != '/':
if not (auto_fun and model_name.startswith('gpt-')):
return None
# response = _auto_function_calling(history_messages, model_name)
# return response['content']
2023-11-30 15:23:05 +08:00
return _auto_route(openai_config, history_messages, model_name)
2023-11-29 14:07:47 +08:00
commands = input_text.split()
command = commands[0][1:]
command_obj = _load_command(command)
2023-11-30 08:42:37 +08:00
if not command_obj:
2023-11-29 14:07:47 +08:00
return None
2023-11-30 08:42:37 +08:00
if not command_obj.steps:
2023-11-30 15:23:05 +08:00
return _run_prompt_command(openai_config, command, history_messages, model_name)
2023-11-29 14:07:47 +08:00
runner = CommandRunner(model_name)
return runner.run_command(
2023-11-30 15:23:05 +08:00
openai_config,
2023-11-29 14:07:47 +08:00
command,
command_obj,
history_messages,
input_text,
parent_hash,
context_contents)