support workflow engine in devchat

This commit is contained in:
bobo.yang 2023-11-29 14:07:47 +08:00
parent d1f8662061
commit 314bb32c47
9 changed files with 476 additions and 16 deletions

BIN
.DS_Store vendored

Binary file not shown.

Binary file not shown.

View File

@ -1,6 +1,8 @@
import json
import sys
from typing import List, Optional
import rich_click as click
from devchat.engine import run_command
from devchat.assistant import Assistant
from devchat.openai.openai_chat import OpenAIChat, OpenAIChatConfig
from devchat.store import Store
@ -24,10 +26,15 @@ from devchat._cli.utils import handle_errors, init_dir, get_model_config
help='Path to a JSON file with functions for the prompt.')
@click.option('-n', '--function-name',
help='Specify the function name when the content is the output of a function.')
@click.option('-ns', '--not-store', is_flag=True, default=False, required=False,
help='Do not save the conversation to the store.')
@click.option('-a', '--auto', is_flag=True, default=False, required=False,
help='Answer question by function-calling.')
def prompt(content: Optional[str], parent: Optional[str], reference: Optional[List[str]],
instruct: Optional[List[str]], context: Optional[List[str]],
model: Optional[str], config_str: Optional[str] = None,
functions: Optional[str] = None, function_name: Optional[str] = None):
functions: Optional[str] = None, function_name: Optional[str] = None,
not_store: Optional[bool] = False, auto: Optional[bool] = False):
"""
This command performs interactions with the specified large language model (LLM)
by sending prompts and receiving responses.
@ -82,9 +89,9 @@ def prompt(content: Optional[str], parent: Optional[str], reference: Optional[Li
openai_config = OpenAIChatConfig(model=model, **parameters_data)
chat = OpenAIChat(openai_config)
store = Store(repo_chat_dir, chat)
chat_store = Store(repo_chat_dir, chat)
assistant = Assistant(chat, store, config.max_input_tokens)
assistant = Assistant(chat, chat_store, config.max_input_tokens, not not_store)
functions_data = None
if functions is not None:
@ -94,5 +101,17 @@ def prompt(content: Optional[str], parent: Optional[str], reference: Optional[Li
parent=parent, references=reference,
function_name=function_name)
click.echo(assistant.prompt.formatted_header())
command_result = run_command(
model,
assistant.prompt.messages,
content,
parent,
context_contents,
auto)
if command_result is not None:
sys.exit(command_result[0])
for response in assistant.iterate_response():
click.echo(response, nl=False)
sys.exit(0)

View File

@ -4,6 +4,7 @@ from typing import Optional, List, Iterator
import openai
from devchat.message import Message
from devchat.chat import Chat
from devchat.openai.openai_prompt import OpenAIPrompt
from devchat.store import Store
from devchat.utils import get_logger
@ -12,7 +13,7 @@ logger = get_logger(__name__)
class Assistant:
def __init__(self, chat: Chat, store: Store, max_prompt_tokens: int):
def __init__(self, chat: Chat, store: Store, max_prompt_tokens: int, need_store: bool):
"""
Initializes an Assistant object.
@ -23,6 +24,11 @@ class Assistant:
self._store = store
self._prompt = None
self.token_limit = max_prompt_tokens
self._need_store = need_store
@property
def prompt(self) -> OpenAIPrompt:
return self._prompt
@property
def available_tokens(self) -> int:
@ -92,7 +98,6 @@ class Assistant:
Iterator[str]: An iterator over response strings from the chat API.
"""
if self._chat.config.stream:
first_chunk = True
created_time = int(time.time())
config_params = self._chat.config.dict(exclude_unset=True)
for chunk in self._chat.stream_response(self._prompt):
@ -114,14 +119,12 @@ class Assistant:
chunk['choices'][0]['delta']['role']='assistant'
delta = self._prompt.append_response(json.dumps(chunk))
if first_chunk:
first_chunk = False
yield self._prompt.formatted_header()
yield delta
if not self._prompt.responses:
raise RuntimeError("No responses returned from the chat API")
self._store.store_prompt(self._prompt)
yield self._prompt.formatted_footer(0) + '\n'
if self._need_store:
self._store.store_prompt(self._prompt)
yield self._prompt.formatted_footer(0) + '\n'
for index in range(1, len(self._prompt.responses)):
yield self._prompt.formatted_full_response(index) + '\n'
else:
@ -129,6 +132,7 @@ class Assistant:
self._prompt.set_response(response_str)
if not self._prompt.responses:
raise RuntimeError("No responses returned from the chat API")
self._store.store_prompt(self._prompt)
if self._need_store:
self._store.store_prompt(self._prompt)
for index in range(len(self._prompt.responses)):
yield self._prompt.formatted_full_response(index) + '\n'

View File

@ -1,11 +1,13 @@
from .command_parser import parse_command, Command, CommandParser
from .namespace import Namespace
from .recursive_prompter import RecursivePrompter
from .router import run_command
__all__ = [
'parse_command',
'Command',
'CommandParser',
'Namespace',
'RecursivePrompter'
'RecursivePrompter',
'run_command'
]

View File

@ -0,0 +1,198 @@
"""
Run Command with a input text.
"""
import os
import sys
import json
import threading
import subprocess
from typing import List
import shlex
import openai
from devchat.utils import get_logger
from .command_parser import Command
logger = get_logger(__name__)
# Equivalent of CommandRun in Python\which executes subprocesses
class CommandRunner:
def __init__(self, model_name: str):
self.process = None
self._model_name = model_name
def _call_function_by_llm(self,
command_name: str,
command: Command,
history_messages: List[dict]):
"""
command needs multi parameters, so we need parse each
parameter by LLM from input_text
"""
properties = {}
required = []
for key, value in command.parameters.items():
properties[key] = {}
for key1, value1 in value.dict().items():
if key1 not in ['type', 'description', 'enum'] or value1 is None:
continue
properties[key][key1] = value1
required.append(key)
tools = [
{
"type": "function",
"function": {
"name": command_name,
"description": command.description,
"parameters": {
"type": "object",
"properties": properties,
"required": required,
},
}
}
]
client = openai.OpenAI(
api_key=os.environ.get("OPENAI_API_KEY", None),
base_url=os.environ.get("OPENAI_API_BASE", None)
)
connection_error = ''
for _1 in range(3):
try:
response = client.chat.completions.create(
messages=history_messages,
model="gpt-3.5-turbo-16k",
stream=False,
tools=tools,
tool_choice={"type": "function", "function": {"name": command_name}}
)
respose_message = response.dict()["choices"][0]["message"]
if not respose_message['tool_calls']:
return None
tool_call = respose_message['tool_calls'][0]['function']
if tool_call['name'] != command_name:
return None
parameters = json.loads(tool_call['arguments'])
return parameters
except (ConnectionError, openai.APIConnectionError) as err:
connection_error = err
continue
except Exception as err:
print("Exception:", err, file=sys.stderr, flush=True)
logger.exception("Call command by LLM error: %s", err)
return None
print("Connect Error:", connection_error, file=sys.stderr, flush=True)
return None
def run_command(self,
command_name: str,
command: Command,
history_messages: List[dict],
input_text: str,
parent_hash: str,
context_contents: List[str]):
"""
if command has parameters, then generate command parameters from input by LLM
if command.input is "required", and input is null, then return error
"""
if command.parameters and len(command.parameters) > 0:
if not self._model_name.startswith("gpt-"):
return None
arguments = self._call_function_by_llm(command_name, command, history_messages)
if not arguments:
print("No valid parameters generated by LLM", file=sys.stderr, flush=True)
return (-1, "")
return self.run_command_with_parameters(
command,
{
"input": input_text.strip().replace(f'/{command_name}', ''),
**arguments
},
parent_hash,
context_contents)
return self.run_command_with_parameters(
command,
{
"input": input_text.strip().replace(f'/{command_name}', '')
},
parent_hash,
context_contents)
def run_command_with_parameters(self,
command: Command,
parameters: dict[str, str],
parent_hash: str,
context_contents: List[str]):
"""
replace $xxx in command.steps[0].run with parameters[xxx]
then run command.steps[0].run
"""
def pipe_reader(pipe, out_data, out_flag):
while pipe:
data = pipe.read(1)
if data == '':
break
out_data['out'] += data
print(data, end='', file=out_flag, flush=True)
try:
# add environment variables to parameters
if parent_hash:
os.environ['PARENT_HASH'] = parent_hash
if context_contents:
os.environ['CONTEXT_CONTENTS'] = json.dumps(context_contents)
for env_var in os.environ:
parameters[env_var] = os.environ[env_var]
parameters["command_python"] = os.environ['command_python']
command_run = command.steps[0]["run"]
# Replace parameters in command run
for parameter in parameters:
command_run = command_run.replace('$' + parameter, str(parameters[parameter]))
# Run command_run
env = os.environ.copy()
if 'PYTHONPATH' in env:
del env['PYTHONPATH']
# result = subprocess.run(command_run, shell=True, env=env)
# return result
with subprocess.Popen(
shlex.split(command_run),
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
env=env,
text=True
) as process:
stdout_data = {'out': ''}
stderr_data = {'out': ''}
stdout_thread = threading.Thread(
target=pipe_reader,
args=(process.stdout, stdout_data, sys.stdout))
stderr_thread = threading.Thread(
target=pipe_reader,
args=(process.stderr, stderr_data, sys.stderr))
stdout_thread.start()
stderr_thread.start()
stdout_thread.join()
stderr_thread.join()
exit_code = process.wait()
return (exit_code, stdout_data["out"])
return (-1, "")
except Exception as err:
print("Exception:", type(err), err, file=sys.stderr, flush=True)
return (-1, "")

View File

@ -0,0 +1,237 @@
import os
import json
from typing import List, Iterable
import openai
from devchat._cli.utils import init_dir
from .namespace import Namespace
from .command_parser import CommandParser, Command
from .command_runner import CommandRunner
def _load_command(command: str):
_, user_chat_dir = init_dir()
workflows_dir = os.path.join(user_chat_dir, 'workflows')
if not os.path.exists(workflows_dir):
return None
if not os.path.isdir(workflows_dir):
return None
namespace = Namespace(workflows_dir)
commander = CommandParser(namespace)
cmd = commander.parse(command)
if not cmd:
return None
return cmd
def _load_commands() -> List[Command]:
_, user_chat_dir = init_dir()
workflows_dir = os.path.join(user_chat_dir, 'workflows')
if not os.path.exists(workflows_dir):
return None
if not os.path.isdir(workflows_dir):
return None
namespace = Namespace(workflows_dir)
commander = CommandParser(namespace)
command_names = namespace.list_names("", True)
commands = []
for name in command_names:
cmd = commander.parse(name)
if not cmd:
continue
commands.append((name, cmd))
return commands
def _create_tool(command_name:str, command: Command) -> dict:
properties = {}
required = []
if command.parameters:
for key, value in command.parameters.items():
properties[key] = {}
for key1, value1 in value.dict().items():
if key1 not in ['type', 'description', 'enum'] or value1 is None:
continue
properties[key][key1] = value1
required.append(key)
elif command.steps[0]['run'].find('$input') > 0:
properties['input'] = {
"type": "string",
"description": "input text"
}
required.append('input')
return {
"type": "function",
"function": {
"name": command_name,
"description": command.description,
"parameters": {
"type": "object",
"properties": properties,
"required": required,
},
}
}
def _create_tools() -> List[dict]:
commands = _load_commands()
return [_create_tool(command[0], command[1]) for command in commands if command[1].steps]
def _call_gpt(messages: List[dict], # messages passed to GPT
model_name: str, # GPT model name
use_function_calling: bool) -> dict: # whether to use function calling
client = openai.OpenAI(
api_key=os.environ.get("OPENAI_API_KEY", None),
base_url=os.environ.get("OPENAI_API_BASE", None)
)
tools = [] if not use_function_calling else _create_tools()
for try_times in range(3):
try:
response: Iterable = client.chat.completions.create(
messages=messages,
model=model_name,
stream=True,
tools=tools
)
response_result = {'content': None, 'function_name': None, 'parameters': ""}
for chunk in response: # pylint: disable=E1133
chunk = chunk.dict()
delta = chunk["choices"][0]["delta"]
if 'tool_calls' in delta and delta['tool_calls']:
tool_call = delta['tool_calls'][0]['function']
if tool_call.get('name', None):
response_result["function_name"] = tool_call["name"]
if tool_call.get("arguments", None):
response_result["parameters"] += tool_call["arguments"]
if delta.get('content', None):
if response_result["content"]:
response_result["content"] += delta["content"]
else:
response_result["content"] = delta["content"]
print(delta["content"], end='', flush=True)
if response_result["function_name"]:
print("``` command_run")
function_call = {
'name': response_result["function_name"],
'arguments': response_result["parameters"]}
print(json.dumps(function_call, indent=4))
print("```", flush=True)
return response_result
except (ConnectionError, openai.APIConnectionError) as err:
if try_times == 2:
print("Connect Exception:", err)
print(err.strerror)
return {'content': None, 'function_name': None, 'parameters': ""}
continue
except Exception as err:
print("Exception Error:", err)
return {'content': None, 'function_name': None, 'parameters': ""}
return {'content': None, 'function_name': None, 'parameters': ""}
def _create_messages():
return []
def _call_function(function_name: str, parameters: str, model_name: str):
"""
call function by function_name and parameters
"""
parameters = json.loads(parameters)
command_obj = _load_command(function_name)
runner = CommandRunner(model_name)
return runner.run_command_with_parameters(command_obj, parameters, "", [])
def _auto_function_calling(history_messages: List[dict], model_name:str):
"""
通过function calling方式来回答当前问题
function最多被调用4次必须进行最终答复
"""
function_call_times = 0
response = _call_gpt(history_messages, model_name, True)
while True:
if response['function_name']:
# run function
function_call_times += 1
print("do function calling", end='\n\n', flush=True)
function_result = _call_function(
response['function_name'],
response['parameters'],
model_name)
history_messages.append({
'role': 'function',
'content': f'exit code: {function_result[0]} stdout: {function_result[1]}',
'name': response['function_name']})
print("after functon call.", end='\n\n', flush=True)
# send function result to gpt
if function_call_times < 5:
response = _call_gpt(history_messages, model_name, True)
else:
response = _call_gpt(history_messages, model_name, False)
else:
return response
def _auto_route(history_messages, model_name:str):
"""
select which command to run
"""
response = _call_gpt(history_messages, model_name, True)
if response['function_name']:
return _call_function(
response['function_name'],
response['parameters'],
model_name)
if response['content']:
return (0, response['content'])
return (-1, "")
def run_command(
model_name: str,
history_messages: List[dict],
input_text: str,
parent_hash: str,
context_contents: List[str],
auto_fun: bool):
"""
load command config, and then run Command
"""
# split input_text by ' ','\n','\t'
if len(input_text.strip()) == 0:
return None
if input_text.strip()[:1] != '/':
if not (auto_fun and model_name.startswith('gpt-')):
return None
# response = _auto_function_calling(history_messages, model_name)
# return response['content']
return _auto_route(history_messages, model_name)
commands = input_text.split()
command = commands[0][1:]
command_obj = _load_command(command)
if not command_obj or not command_obj.steps:
return None
runner = CommandRunner(model_name)
return runner.run_command(
command,
command_obj,
history_messages,
input_text,
parent_hash,
context_contents)

View File

@ -239,8 +239,7 @@ class OpenAIPrompt(Prompt):
if not self._timestamp:
self._timestamp = response_data['created']
elif self._timestamp != response_data['created']:
raise ValueError(f"Time mismatch: expected {self._timestamp}, "
f"got {response_data['created']}")
self._timestamp = response_data['created']
def _id_from_dict(self, response_data: dict):
if self._id is None:

View File

@ -1,6 +1,7 @@
from abc import ABC, abstractmethod
from dataclasses import dataclass, field, asdict
import hashlib
from datetime import datetime
import sys
from typing import Dict, List
from devchat.message import Message
@ -224,7 +225,7 @@ class Prompt(ABC):
formatted_str = f"User: {user_id(self.user_name, self.user_email)[0]}\n"
if not self._timestamp:
raise ValueError(f"Prompt lacks timestamp for formatting header: {self.request}")
self._timestamp = datetime.timestamp(datetime.now())
local_time = unix_to_local_datetime(self._timestamp)
formatted_str += f"Date: {local_time.strftime('%a %b %d %H:%M:%S %Y %z')}\n\n"
@ -267,7 +268,7 @@ class Prompt(ABC):
index, self.request, self.responses)
return None
formatted_str = self.formatted_header()
formatted_str = ""
if self.responses[index].content:
formatted_str += self.responses[index].content