support workflow engine in devchat
This commit is contained in:
parent
d1f8662061
commit
314bb32c47
BIN
site-packages/.DS_Store
vendored
BIN
site-packages/.DS_Store
vendored
Binary file not shown.
@ -1,6 +1,8 @@
|
||||
import json
|
||||
import sys
|
||||
from typing import List, Optional
|
||||
import rich_click as click
|
||||
from devchat.engine import run_command
|
||||
from devchat.assistant import Assistant
|
||||
from devchat.openai.openai_chat import OpenAIChat, OpenAIChatConfig
|
||||
from devchat.store import Store
|
||||
@ -24,10 +26,15 @@ from devchat._cli.utils import handle_errors, init_dir, get_model_config
|
||||
help='Path to a JSON file with functions for the prompt.')
|
||||
@click.option('-n', '--function-name',
|
||||
help='Specify the function name when the content is the output of a function.')
|
||||
@click.option('-ns', '--not-store', is_flag=True, default=False, required=False,
|
||||
help='Do not save the conversation to the store.')
|
||||
@click.option('-a', '--auto', is_flag=True, default=False, required=False,
|
||||
help='Answer question by function-calling.')
|
||||
def prompt(content: Optional[str], parent: Optional[str], reference: Optional[List[str]],
|
||||
instruct: Optional[List[str]], context: Optional[List[str]],
|
||||
model: Optional[str], config_str: Optional[str] = None,
|
||||
functions: Optional[str] = None, function_name: Optional[str] = None):
|
||||
functions: Optional[str] = None, function_name: Optional[str] = None,
|
||||
not_store: Optional[bool] = False, auto: Optional[bool] = False):
|
||||
"""
|
||||
This command performs interactions with the specified large language model (LLM)
|
||||
by sending prompts and receiving responses.
|
||||
@ -82,9 +89,9 @@ def prompt(content: Optional[str], parent: Optional[str], reference: Optional[Li
|
||||
openai_config = OpenAIChatConfig(model=model, **parameters_data)
|
||||
|
||||
chat = OpenAIChat(openai_config)
|
||||
store = Store(repo_chat_dir, chat)
|
||||
chat_store = Store(repo_chat_dir, chat)
|
||||
|
||||
assistant = Assistant(chat, store, config.max_input_tokens)
|
||||
assistant = Assistant(chat, chat_store, config.max_input_tokens, not not_store)
|
||||
|
||||
functions_data = None
|
||||
if functions is not None:
|
||||
@ -94,5 +101,17 @@ def prompt(content: Optional[str], parent: Optional[str], reference: Optional[Li
|
||||
parent=parent, references=reference,
|
||||
function_name=function_name)
|
||||
|
||||
click.echo(assistant.prompt.formatted_header())
|
||||
command_result = run_command(
|
||||
model,
|
||||
assistant.prompt.messages,
|
||||
content,
|
||||
parent,
|
||||
context_contents,
|
||||
auto)
|
||||
if command_result is not None:
|
||||
sys.exit(command_result[0])
|
||||
|
||||
for response in assistant.iterate_response():
|
||||
click.echo(response, nl=False)
|
||||
sys.exit(0)
|
||||
|
@ -4,6 +4,7 @@ from typing import Optional, List, Iterator
|
||||
import openai
|
||||
from devchat.message import Message
|
||||
from devchat.chat import Chat
|
||||
from devchat.openai.openai_prompt import OpenAIPrompt
|
||||
from devchat.store import Store
|
||||
from devchat.utils import get_logger
|
||||
|
||||
@ -12,7 +13,7 @@ logger = get_logger(__name__)
|
||||
|
||||
|
||||
class Assistant:
|
||||
def __init__(self, chat: Chat, store: Store, max_prompt_tokens: int):
|
||||
def __init__(self, chat: Chat, store: Store, max_prompt_tokens: int, need_store: bool):
|
||||
"""
|
||||
Initializes an Assistant object.
|
||||
|
||||
@ -23,6 +24,11 @@ class Assistant:
|
||||
self._store = store
|
||||
self._prompt = None
|
||||
self.token_limit = max_prompt_tokens
|
||||
self._need_store = need_store
|
||||
|
||||
@property
|
||||
def prompt(self) -> OpenAIPrompt:
|
||||
return self._prompt
|
||||
|
||||
@property
|
||||
def available_tokens(self) -> int:
|
||||
@ -92,7 +98,6 @@ class Assistant:
|
||||
Iterator[str]: An iterator over response strings from the chat API.
|
||||
"""
|
||||
if self._chat.config.stream:
|
||||
first_chunk = True
|
||||
created_time = int(time.time())
|
||||
config_params = self._chat.config.dict(exclude_unset=True)
|
||||
for chunk in self._chat.stream_response(self._prompt):
|
||||
@ -114,14 +119,12 @@ class Assistant:
|
||||
chunk['choices'][0]['delta']['role']='assistant'
|
||||
|
||||
delta = self._prompt.append_response(json.dumps(chunk))
|
||||
if first_chunk:
|
||||
first_chunk = False
|
||||
yield self._prompt.formatted_header()
|
||||
yield delta
|
||||
if not self._prompt.responses:
|
||||
raise RuntimeError("No responses returned from the chat API")
|
||||
self._store.store_prompt(self._prompt)
|
||||
yield self._prompt.formatted_footer(0) + '\n'
|
||||
if self._need_store:
|
||||
self._store.store_prompt(self._prompt)
|
||||
yield self._prompt.formatted_footer(0) + '\n'
|
||||
for index in range(1, len(self._prompt.responses)):
|
||||
yield self._prompt.formatted_full_response(index) + '\n'
|
||||
else:
|
||||
@ -129,6 +132,7 @@ class Assistant:
|
||||
self._prompt.set_response(response_str)
|
||||
if not self._prompt.responses:
|
||||
raise RuntimeError("No responses returned from the chat API")
|
||||
self._store.store_prompt(self._prompt)
|
||||
if self._need_store:
|
||||
self._store.store_prompt(self._prompt)
|
||||
for index in range(len(self._prompt.responses)):
|
||||
yield self._prompt.formatted_full_response(index) + '\n'
|
||||
|
@ -1,11 +1,13 @@
|
||||
from .command_parser import parse_command, Command, CommandParser
|
||||
from .namespace import Namespace
|
||||
from .recursive_prompter import RecursivePrompter
|
||||
from .router import run_command
|
||||
|
||||
__all__ = [
|
||||
'parse_command',
|
||||
'Command',
|
||||
'CommandParser',
|
||||
'Namespace',
|
||||
'RecursivePrompter'
|
||||
'RecursivePrompter',
|
||||
'run_command'
|
||||
]
|
||||
|
198
site-packages/devchat/engine/command_runner.py
Normal file
198
site-packages/devchat/engine/command_runner.py
Normal file
@ -0,0 +1,198 @@
|
||||
"""
|
||||
Run Command with a input text.
|
||||
"""
|
||||
import os
|
||||
import sys
|
||||
import json
|
||||
import threading
|
||||
import subprocess
|
||||
from typing import List
|
||||
import shlex
|
||||
|
||||
import openai
|
||||
|
||||
from devchat.utils import get_logger
|
||||
from .command_parser import Command
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
# Equivalent of CommandRun in Python\which executes subprocesses
|
||||
class CommandRunner:
|
||||
def __init__(self, model_name: str):
|
||||
self.process = None
|
||||
self._model_name = model_name
|
||||
|
||||
def _call_function_by_llm(self,
|
||||
command_name: str,
|
||||
command: Command,
|
||||
history_messages: List[dict]):
|
||||
"""
|
||||
command needs multi parameters, so we need parse each
|
||||
parameter by LLM from input_text
|
||||
"""
|
||||
properties = {}
|
||||
required = []
|
||||
for key, value in command.parameters.items():
|
||||
properties[key] = {}
|
||||
for key1, value1 in value.dict().items():
|
||||
if key1 not in ['type', 'description', 'enum'] or value1 is None:
|
||||
continue
|
||||
properties[key][key1] = value1
|
||||
required.append(key)
|
||||
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": command_name,
|
||||
"description": command.description,
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": properties,
|
||||
"required": required,
|
||||
},
|
||||
}
|
||||
}
|
||||
]
|
||||
|
||||
client = openai.OpenAI(
|
||||
api_key=os.environ.get("OPENAI_API_KEY", None),
|
||||
base_url=os.environ.get("OPENAI_API_BASE", None)
|
||||
)
|
||||
|
||||
connection_error = ''
|
||||
for _1 in range(3):
|
||||
try:
|
||||
response = client.chat.completions.create(
|
||||
messages=history_messages,
|
||||
model="gpt-3.5-turbo-16k",
|
||||
stream=False,
|
||||
tools=tools,
|
||||
tool_choice={"type": "function", "function": {"name": command_name}}
|
||||
)
|
||||
|
||||
respose_message = response.dict()["choices"][0]["message"]
|
||||
if not respose_message['tool_calls']:
|
||||
return None
|
||||
tool_call = respose_message['tool_calls'][0]['function']
|
||||
if tool_call['name'] != command_name:
|
||||
return None
|
||||
parameters = json.loads(tool_call['arguments'])
|
||||
return parameters
|
||||
except (ConnectionError, openai.APIConnectionError) as err:
|
||||
connection_error = err
|
||||
continue
|
||||
except Exception as err:
|
||||
print("Exception:", err, file=sys.stderr, flush=True)
|
||||
logger.exception("Call command by LLM error: %s", err)
|
||||
return None
|
||||
print("Connect Error:", connection_error, file=sys.stderr, flush=True)
|
||||
return None
|
||||
|
||||
|
||||
def run_command(self,
|
||||
command_name: str,
|
||||
command: Command,
|
||||
history_messages: List[dict],
|
||||
input_text: str,
|
||||
parent_hash: str,
|
||||
context_contents: List[str]):
|
||||
"""
|
||||
if command has parameters, then generate command parameters from input by LLM
|
||||
if command.input is "required", and input is null, then return error
|
||||
"""
|
||||
if command.parameters and len(command.parameters) > 0:
|
||||
if not self._model_name.startswith("gpt-"):
|
||||
return None
|
||||
|
||||
arguments = self._call_function_by_llm(command_name, command, history_messages)
|
||||
if not arguments:
|
||||
print("No valid parameters generated by LLM", file=sys.stderr, flush=True)
|
||||
return (-1, "")
|
||||
return self.run_command_with_parameters(
|
||||
command,
|
||||
{
|
||||
"input": input_text.strip().replace(f'/{command_name}', ''),
|
||||
**arguments
|
||||
},
|
||||
parent_hash,
|
||||
context_contents)
|
||||
|
||||
return self.run_command_with_parameters(
|
||||
command,
|
||||
{
|
||||
"input": input_text.strip().replace(f'/{command_name}', '')
|
||||
},
|
||||
parent_hash,
|
||||
context_contents)
|
||||
|
||||
|
||||
def run_command_with_parameters(self,
|
||||
command: Command,
|
||||
parameters: dict[str, str],
|
||||
parent_hash: str,
|
||||
context_contents: List[str]):
|
||||
"""
|
||||
replace $xxx in command.steps[0].run with parameters[xxx]
|
||||
then run command.steps[0].run
|
||||
"""
|
||||
def pipe_reader(pipe, out_data, out_flag):
|
||||
while pipe:
|
||||
data = pipe.read(1)
|
||||
if data == '':
|
||||
break
|
||||
out_data['out'] += data
|
||||
print(data, end='', file=out_flag, flush=True)
|
||||
|
||||
try:
|
||||
# add environment variables to parameters
|
||||
if parent_hash:
|
||||
os.environ['PARENT_HASH'] = parent_hash
|
||||
if context_contents:
|
||||
os.environ['CONTEXT_CONTENTS'] = json.dumps(context_contents)
|
||||
for env_var in os.environ:
|
||||
parameters[env_var] = os.environ[env_var]
|
||||
parameters["command_python"] = os.environ['command_python']
|
||||
|
||||
command_run = command.steps[0]["run"]
|
||||
# Replace parameters in command run
|
||||
for parameter in parameters:
|
||||
command_run = command_run.replace('$' + parameter, str(parameters[parameter]))
|
||||
|
||||
# Run command_run
|
||||
env = os.environ.copy()
|
||||
if 'PYTHONPATH' in env:
|
||||
del env['PYTHONPATH']
|
||||
# result = subprocess.run(command_run, shell=True, env=env)
|
||||
# return result
|
||||
with subprocess.Popen(
|
||||
shlex.split(command_run),
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.STDOUT,
|
||||
env=env,
|
||||
text=True
|
||||
) as process:
|
||||
|
||||
stdout_data = {'out': ''}
|
||||
stderr_data = {'out': ''}
|
||||
|
||||
stdout_thread = threading.Thread(
|
||||
target=pipe_reader,
|
||||
args=(process.stdout, stdout_data, sys.stdout))
|
||||
stderr_thread = threading.Thread(
|
||||
target=pipe_reader,
|
||||
args=(process.stderr, stderr_data, sys.stderr))
|
||||
|
||||
stdout_thread.start()
|
||||
stderr_thread.start()
|
||||
|
||||
stdout_thread.join()
|
||||
stderr_thread.join()
|
||||
exit_code = process.wait()
|
||||
return (exit_code, stdout_data["out"])
|
||||
return (-1, "")
|
||||
except Exception as err:
|
||||
print("Exception:", type(err), err, file=sys.stderr, flush=True)
|
||||
return (-1, "")
|
237
site-packages/devchat/engine/router.py
Normal file
237
site-packages/devchat/engine/router.py
Normal file
@ -0,0 +1,237 @@
|
||||
import os
|
||||
import json
|
||||
from typing import List, Iterable
|
||||
import openai
|
||||
from devchat._cli.utils import init_dir
|
||||
from .namespace import Namespace
|
||||
from .command_parser import CommandParser, Command
|
||||
from .command_runner import CommandRunner
|
||||
|
||||
|
||||
def _load_command(command: str):
|
||||
_, user_chat_dir = init_dir()
|
||||
workflows_dir = os.path.join(user_chat_dir, 'workflows')
|
||||
if not os.path.exists(workflows_dir):
|
||||
return None
|
||||
if not os.path.isdir(workflows_dir):
|
||||
return None
|
||||
|
||||
namespace = Namespace(workflows_dir)
|
||||
commander = CommandParser(namespace)
|
||||
|
||||
cmd = commander.parse(command)
|
||||
if not cmd:
|
||||
return None
|
||||
return cmd
|
||||
|
||||
|
||||
def _load_commands() -> List[Command]:
|
||||
_, user_chat_dir = init_dir()
|
||||
workflows_dir = os.path.join(user_chat_dir, 'workflows')
|
||||
if not os.path.exists(workflows_dir):
|
||||
return None
|
||||
if not os.path.isdir(workflows_dir):
|
||||
return None
|
||||
|
||||
namespace = Namespace(workflows_dir)
|
||||
commander = CommandParser(namespace)
|
||||
command_names = namespace.list_names("", True)
|
||||
|
||||
commands = []
|
||||
for name in command_names:
|
||||
cmd = commander.parse(name)
|
||||
if not cmd:
|
||||
continue
|
||||
commands.append((name, cmd))
|
||||
|
||||
return commands
|
||||
|
||||
|
||||
def _create_tool(command_name:str, command: Command) -> dict:
|
||||
properties = {}
|
||||
required = []
|
||||
if command.parameters:
|
||||
for key, value in command.parameters.items():
|
||||
properties[key] = {}
|
||||
for key1, value1 in value.dict().items():
|
||||
if key1 not in ['type', 'description', 'enum'] or value1 is None:
|
||||
continue
|
||||
properties[key][key1] = value1
|
||||
required.append(key)
|
||||
elif command.steps[0]['run'].find('$input') > 0:
|
||||
properties['input'] = {
|
||||
"type": "string",
|
||||
"description": "input text"
|
||||
}
|
||||
required.append('input')
|
||||
|
||||
return {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": command_name,
|
||||
"description": command.description,
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": properties,
|
||||
"required": required,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def _create_tools() -> List[dict]:
|
||||
commands = _load_commands()
|
||||
return [_create_tool(command[0], command[1]) for command in commands if command[1].steps]
|
||||
|
||||
|
||||
def _call_gpt(messages: List[dict], # messages passed to GPT
|
||||
model_name: str, # GPT model name
|
||||
use_function_calling: bool) -> dict: # whether to use function calling
|
||||
client = openai.OpenAI(
|
||||
api_key=os.environ.get("OPENAI_API_KEY", None),
|
||||
base_url=os.environ.get("OPENAI_API_BASE", None)
|
||||
)
|
||||
|
||||
tools = [] if not use_function_calling else _create_tools()
|
||||
|
||||
for try_times in range(3):
|
||||
try:
|
||||
response: Iterable = client.chat.completions.create(
|
||||
messages=messages,
|
||||
model=model_name,
|
||||
stream=True,
|
||||
tools=tools
|
||||
)
|
||||
|
||||
response_result = {'content': None, 'function_name': None, 'parameters': ""}
|
||||
for chunk in response: # pylint: disable=E1133
|
||||
chunk = chunk.dict()
|
||||
delta = chunk["choices"][0]["delta"]
|
||||
if 'tool_calls' in delta and delta['tool_calls']:
|
||||
tool_call = delta['tool_calls'][0]['function']
|
||||
if tool_call.get('name', None):
|
||||
response_result["function_name"] = tool_call["name"]
|
||||
if tool_call.get("arguments", None):
|
||||
response_result["parameters"] += tool_call["arguments"]
|
||||
if delta.get('content', None):
|
||||
if response_result["content"]:
|
||||
response_result["content"] += delta["content"]
|
||||
else:
|
||||
response_result["content"] = delta["content"]
|
||||
print(delta["content"], end='', flush=True)
|
||||
if response_result["function_name"]:
|
||||
print("``` command_run")
|
||||
function_call = {
|
||||
'name': response_result["function_name"],
|
||||
'arguments': response_result["parameters"]}
|
||||
print(json.dumps(function_call, indent=4))
|
||||
print("```", flush=True)
|
||||
return response_result
|
||||
except (ConnectionError, openai.APIConnectionError) as err:
|
||||
if try_times == 2:
|
||||
print("Connect Exception:", err)
|
||||
print(err.strerror)
|
||||
return {'content': None, 'function_name': None, 'parameters': ""}
|
||||
continue
|
||||
except Exception as err:
|
||||
print("Exception Error:", err)
|
||||
return {'content': None, 'function_name': None, 'parameters': ""}
|
||||
return {'content': None, 'function_name': None, 'parameters': ""}
|
||||
|
||||
|
||||
def _create_messages():
|
||||
return []
|
||||
|
||||
|
||||
def _call_function(function_name: str, parameters: str, model_name: str):
|
||||
"""
|
||||
call function by function_name and parameters
|
||||
"""
|
||||
parameters = json.loads(parameters)
|
||||
command_obj = _load_command(function_name)
|
||||
runner = CommandRunner(model_name)
|
||||
return runner.run_command_with_parameters(command_obj, parameters, "", [])
|
||||
|
||||
|
||||
def _auto_function_calling(history_messages: List[dict], model_name:str):
|
||||
"""
|
||||
通过function calling方式来回答当前问题。
|
||||
function最多被调用4次,必须进行最终答复。
|
||||
"""
|
||||
function_call_times = 0
|
||||
|
||||
response = _call_gpt(history_messages, model_name, True)
|
||||
while True:
|
||||
if response['function_name']:
|
||||
# run function
|
||||
function_call_times += 1
|
||||
print("do function calling", end='\n\n', flush=True)
|
||||
function_result = _call_function(
|
||||
response['function_name'],
|
||||
response['parameters'],
|
||||
model_name)
|
||||
history_messages.append({
|
||||
'role': 'function',
|
||||
'content': f'exit code: {function_result[0]} stdout: {function_result[1]}',
|
||||
'name': response['function_name']})
|
||||
print("after functon call.", end='\n\n', flush=True)
|
||||
|
||||
# send function result to gpt
|
||||
if function_call_times < 5:
|
||||
response = _call_gpt(history_messages, model_name, True)
|
||||
else:
|
||||
response = _call_gpt(history_messages, model_name, False)
|
||||
else:
|
||||
return response
|
||||
|
||||
|
||||
def _auto_route(history_messages, model_name:str):
|
||||
"""
|
||||
select which command to run
|
||||
"""
|
||||
response = _call_gpt(history_messages, model_name, True)
|
||||
if response['function_name']:
|
||||
return _call_function(
|
||||
response['function_name'],
|
||||
response['parameters'],
|
||||
model_name)
|
||||
if response['content']:
|
||||
return (0, response['content'])
|
||||
return (-1, "")
|
||||
|
||||
|
||||
def run_command(
|
||||
model_name: str,
|
||||
history_messages: List[dict],
|
||||
input_text: str,
|
||||
parent_hash: str,
|
||||
context_contents: List[str],
|
||||
auto_fun: bool):
|
||||
"""
|
||||
load command config, and then run Command
|
||||
"""
|
||||
# split input_text by ' ','\n','\t'
|
||||
if len(input_text.strip()) == 0:
|
||||
return None
|
||||
if input_text.strip()[:1] != '/':
|
||||
if not (auto_fun and model_name.startswith('gpt-')):
|
||||
return None
|
||||
|
||||
# response = _auto_function_calling(history_messages, model_name)
|
||||
# return response['content']
|
||||
return _auto_route(history_messages, model_name)
|
||||
commands = input_text.split()
|
||||
command = commands[0][1:]
|
||||
|
||||
command_obj = _load_command(command)
|
||||
if not command_obj or not command_obj.steps:
|
||||
return None
|
||||
|
||||
runner = CommandRunner(model_name)
|
||||
return runner.run_command(
|
||||
command,
|
||||
command_obj,
|
||||
history_messages,
|
||||
input_text,
|
||||
parent_hash,
|
||||
context_contents)
|
@ -239,8 +239,7 @@ class OpenAIPrompt(Prompt):
|
||||
if not self._timestamp:
|
||||
self._timestamp = response_data['created']
|
||||
elif self._timestamp != response_data['created']:
|
||||
raise ValueError(f"Time mismatch: expected {self._timestamp}, "
|
||||
f"got {response_data['created']}")
|
||||
self._timestamp = response_data['created']
|
||||
|
||||
def _id_from_dict(self, response_data: dict):
|
||||
if self._id is None:
|
||||
|
@ -1,6 +1,7 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass, field, asdict
|
||||
import hashlib
|
||||
from datetime import datetime
|
||||
import sys
|
||||
from typing import Dict, List
|
||||
from devchat.message import Message
|
||||
@ -224,7 +225,7 @@ class Prompt(ABC):
|
||||
formatted_str = f"User: {user_id(self.user_name, self.user_email)[0]}\n"
|
||||
|
||||
if not self._timestamp:
|
||||
raise ValueError(f"Prompt lacks timestamp for formatting header: {self.request}")
|
||||
self._timestamp = datetime.timestamp(datetime.now())
|
||||
|
||||
local_time = unix_to_local_datetime(self._timestamp)
|
||||
formatted_str += f"Date: {local_time.strftime('%a %b %d %H:%M:%S %Y %z')}\n\n"
|
||||
@ -267,7 +268,7 @@ class Prompt(ABC):
|
||||
index, self.request, self.responses)
|
||||
return None
|
||||
|
||||
formatted_str = self.formatted_header()
|
||||
formatted_str = ""
|
||||
|
||||
if self.responses[index].content:
|
||||
formatted_str += self.responses[index].content
|
||||
|
Loading…
x
Reference in New Issue
Block a user