from __future__ import annotations import inspect from typing import Any, TypeVar from typing_extensions import TypeGuard import pydantic from .._types import NOT_GIVEN from .._utils import is_dict as _is_dict, is_list from .._compat import PYDANTIC_V2, model_json_schema _T = TypeVar("_T") def to_strict_json_schema(model: type[pydantic.BaseModel] | pydantic.TypeAdapter[Any]) -> dict[str, Any]: if inspect.isclass(model) and is_basemodel_type(model): schema = model_json_schema(model) elif PYDANTIC_V2 and isinstance(model, pydantic.TypeAdapter): schema = model.json_schema() else: raise TypeError(f"Non BaseModel types are only supported with Pydantic v2 - {model}") return _ensure_strict_json_schema(schema, path=(), root=schema) def _ensure_strict_json_schema( json_schema: object, *, path: tuple[str, ...], root: dict[str, object], ) -> dict[str, Any]: """Mutates the given JSON schema to ensure it conforms to the `strict` standard that the API expects. """ if not is_dict(json_schema): raise TypeError(f"Expected {json_schema} to be a dictionary; path={path}") defs = json_schema.get("$defs") if is_dict(defs): for def_name, def_schema in defs.items(): _ensure_strict_json_schema(def_schema, path=(*path, "$defs", def_name), root=root) definitions = json_schema.get("definitions") if is_dict(definitions): for definition_name, definition_schema in definitions.items(): _ensure_strict_json_schema(definition_schema, path=(*path, "definitions", definition_name), root=root) typ = json_schema.get("type") if typ == "object" and "additionalProperties" not in json_schema: json_schema["additionalProperties"] = False # object types # { 'type': 'object', 'properties': { 'a': {...} } } properties = json_schema.get("properties") if is_dict(properties): json_schema["required"] = [prop for prop in properties.keys()] json_schema["properties"] = { key: _ensure_strict_json_schema(prop_schema, path=(*path, "properties", key), root=root) for key, prop_schema in properties.items() } # arrays # { 'type': 'array', 'items': {...} } items = json_schema.get("items") if is_dict(items): json_schema["items"] = _ensure_strict_json_schema(items, path=(*path, "items"), root=root) # unions any_of = json_schema.get("anyOf") if is_list(any_of): json_schema["anyOf"] = [ _ensure_strict_json_schema(variant, path=(*path, "anyOf", str(i)), root=root) for i, variant in enumerate(any_of) ] # intersections all_of = json_schema.get("allOf") if is_list(all_of): if len(all_of) == 1: json_schema.update(_ensure_strict_json_schema(all_of[0], path=(*path, "allOf", "0"), root=root)) json_schema.pop("allOf") else: json_schema["allOf"] = [ _ensure_strict_json_schema(entry, path=(*path, "allOf", str(i)), root=root) for i, entry in enumerate(all_of) ] # strip `None` defaults as there's no meaningful distinction here # the schema will still be `nullable` and the model will default # to using `None` anyway if json_schema.get("default", NOT_GIVEN) is None: json_schema.pop("default") # we can't use `$ref`s if there are also other properties defined, e.g. # `{"$ref": "...", "description": "my description"}` # # so we unravel the ref # `{"type": "string", "description": "my description"}` ref = json_schema.get("$ref") if ref and has_more_than_n_keys(json_schema, 1): assert isinstance(ref, str), f"Received non-string $ref - {ref}" resolved = resolve_ref(root=root, ref=ref) if not is_dict(resolved): raise ValueError(f"Expected `$ref: {ref}` to resolved to a dictionary but got {resolved}") # properties from the json schema take priority over the ones on the `$ref` json_schema.update({**resolved, **json_schema}) json_schema.pop("$ref") return json_schema def resolve_ref(*, root: dict[str, object], ref: str) -> object: if not ref.startswith("#/"): raise ValueError(f"Unexpected $ref format {ref!r}; Does not start with #/") path = ref[2:].split("/") resolved = root for key in path: value = resolved[key] assert is_dict(value), f"encountered non-dictionary entry while resolving {ref} - {resolved}" resolved = value return resolved def is_basemodel_type(typ: type) -> TypeGuard[type[pydantic.BaseModel]]: return issubclass(typ, pydantic.BaseModel) def is_dataclass_like_type(typ: type) -> bool: """Returns True if the given type likely used `@pydantic.dataclass`""" return hasattr(typ, "__pydantic_config__") def is_dict(obj: object) -> TypeGuard[dict[str, object]]: # just pretend that we know there are only `str` keys # as that check is not worth the performance cost return _is_dict(obj) def has_more_than_n_keys(obj: dict[str, object], n: int) -> bool: i = 0 for _ in obj.keys(): i += 1 if i > n: return True return False