# pyright: basic from __future__ import annotations import os import sys from typing import Any, TypeVar, Callable, Optional, NamedTuple from typing_extensions import TypeAlias from .._extras import pandas as pd class Remediation(NamedTuple): name: str immediate_msg: Optional[str] = None necessary_msg: Optional[str] = None necessary_fn: Optional[Callable[[Any], Any]] = None optional_msg: Optional[str] = None optional_fn: Optional[Callable[[Any], Any]] = None error_msg: Optional[str] = None OptionalDataFrameT = TypeVar("OptionalDataFrameT", bound="Optional[pd.DataFrame]") def num_examples_validator(df: pd.DataFrame) -> Remediation: """ This validator will only print out the number of examples and recommend to the user to increase the number of examples if less than 100. """ MIN_EXAMPLES = 100 optional_suggestion = ( "" if len(df) >= MIN_EXAMPLES else ". In general, we recommend having at least a few hundred examples. We've found that performance tends to linearly increase for every doubling of the number of examples" ) immediate_msg = f"\n- Your file contains {len(df)} prompt-completion pairs{optional_suggestion}" return Remediation(name="num_examples", immediate_msg=immediate_msg) def necessary_column_validator(df: pd.DataFrame, necessary_column: str) -> Remediation: """ This validator will ensure that the necessary column is present in the dataframe. """ def lower_case_column(df: pd.DataFrame, column: Any) -> pd.DataFrame: cols = [c for c in df.columns if str(c).lower() == column] df.rename(columns={cols[0]: column.lower()}, inplace=True) return df immediate_msg = None necessary_fn = None necessary_msg = None error_msg = None if necessary_column not in df.columns: if necessary_column in [str(c).lower() for c in df.columns]: def lower_case_column_creator(df: pd.DataFrame) -> pd.DataFrame: return lower_case_column(df, necessary_column) necessary_fn = lower_case_column_creator immediate_msg = f"\n- The `{necessary_column}` column/key should be lowercase" necessary_msg = f"Lower case column name to `{necessary_column}`" else: error_msg = f"`{necessary_column}` column/key is missing. Please make sure you name your columns/keys appropriately, then retry" return Remediation( name="necessary_column", immediate_msg=immediate_msg, necessary_msg=necessary_msg, necessary_fn=necessary_fn, error_msg=error_msg, ) def additional_column_validator(df: pd.DataFrame, fields: list[str] = ["prompt", "completion"]) -> Remediation: """ This validator will remove additional columns from the dataframe. """ additional_columns = [] necessary_msg = None immediate_msg = None necessary_fn = None # type: ignore if len(df.columns) > 2: additional_columns = [c for c in df.columns if c not in fields] warn_message = "" for ac in additional_columns: dups = [c for c in additional_columns if ac in c] if len(dups) > 0: warn_message += f"\n WARNING: Some of the additional columns/keys contain `{ac}` in their name. These will be ignored, and the column/key `{ac}` will be used instead. This could also result from a duplicate column/key in the provided file." immediate_msg = f"\n- The input file should contain exactly two columns/keys per row. Additional columns/keys present are: {additional_columns}{warn_message}" necessary_msg = f"Remove additional columns/keys: {additional_columns}" def necessary_fn(x: Any) -> Any: return x[fields] return Remediation( name="additional_column", immediate_msg=immediate_msg, necessary_msg=necessary_msg, necessary_fn=necessary_fn, ) def non_empty_field_validator(df: pd.DataFrame, field: str = "completion") -> Remediation: """ This validator will ensure that no completion is empty. """ necessary_msg = None necessary_fn = None # type: ignore immediate_msg = None if df[field].apply(lambda x: x == "").any() or df[field].isnull().any(): empty_rows = (df[field] == "") | (df[field].isnull()) empty_indexes = df.reset_index().index[empty_rows].tolist() immediate_msg = f"\n- `{field}` column/key should not contain empty strings. These are rows: {empty_indexes}" def necessary_fn(x: Any) -> Any: return x[x[field] != ""].dropna(subset=[field]) necessary_msg = f"Remove {len(empty_indexes)} rows with empty {field}s" return Remediation( name=f"empty_{field}", immediate_msg=immediate_msg, necessary_msg=necessary_msg, necessary_fn=necessary_fn, ) def duplicated_rows_validator(df: pd.DataFrame, fields: list[str] = ["prompt", "completion"]) -> Remediation: """ This validator will suggest to the user to remove duplicate rows if they exist. """ duplicated_rows = df.duplicated(subset=fields) duplicated_indexes = df.reset_index().index[duplicated_rows].tolist() immediate_msg = None optional_msg = None optional_fn = None # type: ignore if len(duplicated_indexes) > 0: immediate_msg = f"\n- There are {len(duplicated_indexes)} duplicated {'-'.join(fields)} sets. These are rows: {duplicated_indexes}" optional_msg = f"Remove {len(duplicated_indexes)} duplicate rows" def optional_fn(x: Any) -> Any: return x.drop_duplicates(subset=fields) return Remediation( name="duplicated_rows", immediate_msg=immediate_msg, optional_msg=optional_msg, optional_fn=optional_fn, ) def long_examples_validator(df: pd.DataFrame) -> Remediation: """ This validator will suggest to the user to remove examples that are too long. """ immediate_msg = None optional_msg = None optional_fn = None # type: ignore ft_type = infer_task_type(df) if ft_type != "open-ended generation": def get_long_indexes(d: pd.DataFrame) -> Any: long_examples = d.apply(lambda x: len(x.prompt) + len(x.completion) > 10000, axis=1) return d.reset_index().index[long_examples].tolist() long_indexes = get_long_indexes(df) if len(long_indexes) > 0: immediate_msg = f"\n- There are {len(long_indexes)} examples that are very long. These are rows: {long_indexes}\nFor conditional generation, and for classification the examples shouldn't be longer than 2048 tokens." optional_msg = f"Remove {len(long_indexes)} long examples" def optional_fn(x: Any) -> Any: long_indexes_to_drop = get_long_indexes(x) if long_indexes != long_indexes_to_drop: sys.stdout.write( f"The indices of the long examples has changed as a result of a previously applied recommendation.\nThe {len(long_indexes_to_drop)} long examples to be dropped are now at the following indices: {long_indexes_to_drop}\n" ) return x.drop(long_indexes_to_drop) return Remediation( name="long_examples", immediate_msg=immediate_msg, optional_msg=optional_msg, optional_fn=optional_fn, ) def common_prompt_suffix_validator(df: pd.DataFrame) -> Remediation: """ This validator will suggest to add a common suffix to the prompt if one doesn't already exist in case of classification or conditional generation. """ error_msg = None immediate_msg = None optional_msg = None optional_fn = None # type: ignore # Find a suffix which is not contained within the prompt otherwise suggested_suffix = "\n\n### =>\n\n" suffix_options = [ " ->", "\n\n###\n\n", "\n\n===\n\n", "\n\n---\n\n", "\n\n===>\n\n", "\n\n--->\n\n", ] for suffix_option in suffix_options: if suffix_option == " ->": if df.prompt.str.contains("\n").any(): continue if df.prompt.str.contains(suffix_option, regex=False).any(): continue suggested_suffix = suffix_option break display_suggested_suffix = suggested_suffix.replace("\n", "\\n") ft_type = infer_task_type(df) if ft_type == "open-ended generation": return Remediation(name="common_suffix") def add_suffix(x: Any, suffix: Any) -> Any: x["prompt"] += suffix return x common_suffix = get_common_xfix(df.prompt, xfix="suffix") if (df.prompt == common_suffix).all(): error_msg = f"All prompts are identical: `{common_suffix}`\nConsider leaving the prompts blank if you want to do open-ended generation, otherwise ensure prompts are different" return Remediation(name="common_suffix", error_msg=error_msg) if common_suffix != "": common_suffix_new_line_handled = common_suffix.replace("\n", "\\n") immediate_msg = f"\n- All prompts end with suffix `{common_suffix_new_line_handled}`" if len(common_suffix) > 10: immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`" if df.prompt.str[: -len(common_suffix)].str.contains(common_suffix, regex=False).any(): immediate_msg += f"\n WARNING: Some of your prompts contain the suffix `{common_suffix}` more than once. We strongly suggest that you review your prompts and add a unique suffix" else: immediate_msg = "\n- Your data does not contain a common separator at the end of your prompts. Having a separator string appended to the end of the prompt makes it clearer to the fine-tuned model where the completion should begin. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples. If you intend to do open-ended generation, then you should leave the prompts empty" if common_suffix == "": optional_msg = f"Add a suffix separator `{display_suggested_suffix}` to all prompts" def optional_fn(x: Any) -> Any: return add_suffix(x, suggested_suffix) return Remediation( name="common_completion_suffix", immediate_msg=immediate_msg, optional_msg=optional_msg, optional_fn=optional_fn, error_msg=error_msg, ) def common_prompt_prefix_validator(df: pd.DataFrame) -> Remediation: """ This validator will suggest to remove a common prefix from the prompt if a long one exist. """ MAX_PREFIX_LEN = 12 immediate_msg = None optional_msg = None optional_fn = None # type: ignore common_prefix = get_common_xfix(df.prompt, xfix="prefix") if common_prefix == "": return Remediation(name="common_prefix") def remove_common_prefix(x: Any, prefix: Any) -> Any: x["prompt"] = x["prompt"].str[len(prefix) :] return x if (df.prompt == common_prefix).all(): # already handled by common_suffix_validator return Remediation(name="common_prefix") if common_prefix != "": immediate_msg = f"\n- All prompts start with prefix `{common_prefix}`" if MAX_PREFIX_LEN < len(common_prefix): immediate_msg += ". Fine-tuning doesn't require the instruction specifying the task, or a few-shot example scenario. Most of the time you should only add the input data into the prompt, and the desired output into the completion" optional_msg = f"Remove prefix `{common_prefix}` from all prompts" def optional_fn(x: Any) -> Any: return remove_common_prefix(x, common_prefix) return Remediation( name="common_prompt_prefix", immediate_msg=immediate_msg, optional_msg=optional_msg, optional_fn=optional_fn, ) def common_completion_prefix_validator(df: pd.DataFrame) -> Remediation: """ This validator will suggest to remove a common prefix from the completion if a long one exist. """ MAX_PREFIX_LEN = 5 common_prefix = get_common_xfix(df.completion, xfix="prefix") ws_prefix = len(common_prefix) > 0 and common_prefix[0] == " " if len(common_prefix) < MAX_PREFIX_LEN: return Remediation(name="common_prefix") def remove_common_prefix(x: Any, prefix: Any, ws_prefix: Any) -> Any: x["completion"] = x["completion"].str[len(prefix) :] if ws_prefix: # keep the single whitespace as prefix x["completion"] = f" {x['completion']}" return x if (df.completion == common_prefix).all(): # already handled by common_suffix_validator return Remediation(name="common_prefix") immediate_msg = f"\n- All completions start with prefix `{common_prefix}`. Most of the time you should only add the output data into the completion, without any prefix" optional_msg = f"Remove prefix `{common_prefix}` from all completions" def optional_fn(x: Any) -> Any: return remove_common_prefix(x, common_prefix, ws_prefix) return Remediation( name="common_completion_prefix", immediate_msg=immediate_msg, optional_msg=optional_msg, optional_fn=optional_fn, ) def common_completion_suffix_validator(df: pd.DataFrame) -> Remediation: """ This validator will suggest to add a common suffix to the completion if one doesn't already exist in case of classification or conditional generation. """ error_msg = None immediate_msg = None optional_msg = None optional_fn = None # type: ignore ft_type = infer_task_type(df) if ft_type == "open-ended generation" or ft_type == "classification": return Remediation(name="common_suffix") common_suffix = get_common_xfix(df.completion, xfix="suffix") if (df.completion == common_suffix).all(): error_msg = f"All completions are identical: `{common_suffix}`\nEnsure completions are different, otherwise the model will just repeat `{common_suffix}`" return Remediation(name="common_suffix", error_msg=error_msg) # Find a suffix which is not contained within the completion otherwise suggested_suffix = " [END]" suffix_options = [ "\n", ".", " END", "***", "+++", "&&&", "$$$", "@@@", "%%%", ] for suffix_option in suffix_options: if df.completion.str.contains(suffix_option, regex=False).any(): continue suggested_suffix = suffix_option break display_suggested_suffix = suggested_suffix.replace("\n", "\\n") def add_suffix(x: Any, suffix: Any) -> Any: x["completion"] += suffix return x if common_suffix != "": common_suffix_new_line_handled = common_suffix.replace("\n", "\\n") immediate_msg = f"\n- All completions end with suffix `{common_suffix_new_line_handled}`" if len(common_suffix) > 10: immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`" if df.completion.str[: -len(common_suffix)].str.contains(common_suffix, regex=False).any(): immediate_msg += f"\n WARNING: Some of your completions contain the suffix `{common_suffix}` more than once. We suggest that you review your completions and add a unique ending" else: immediate_msg = "\n- Your data does not contain a common ending at the end of your completions. Having a common ending string appended to the end of the completion makes it clearer to the fine-tuned model where the completion should end. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples." if common_suffix == "": optional_msg = f"Add a suffix ending `{display_suggested_suffix}` to all completions" def optional_fn(x: Any) -> Any: return add_suffix(x, suggested_suffix) return Remediation( name="common_completion_suffix", immediate_msg=immediate_msg, optional_msg=optional_msg, optional_fn=optional_fn, error_msg=error_msg, ) def completions_space_start_validator(df: pd.DataFrame) -> Remediation: """ This validator will suggest to add a space at the start of the completion if it doesn't already exist. This helps with tokenization. """ def add_space_start(x: Any) -> Any: x["completion"] = x["completion"].apply(lambda s: ("" if s.startswith(" ") else " ") + s) return x optional_msg = None optional_fn = None immediate_msg = None if df.completion.str[:1].nunique() != 1 or df.completion.values[0][0] != " ": immediate_msg = "\n- The completion should start with a whitespace character (` `). This tends to produce better results due to the tokenization we use. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details" optional_msg = "Add a whitespace character to the beginning of the completion" optional_fn = add_space_start return Remediation( name="completion_space_start", immediate_msg=immediate_msg, optional_msg=optional_msg, optional_fn=optional_fn, ) def lower_case_validator(df: pd.DataFrame, column: Any) -> Remediation | None: """ This validator will suggest to lowercase the column values, if more than a third of letters are uppercase. """ def lower_case(x: Any) -> Any: x[column] = x[column].str.lower() return x count_upper = df[column].apply(lambda x: sum(1 for c in x if c.isalpha() and c.isupper())).sum() count_lower = df[column].apply(lambda x: sum(1 for c in x if c.isalpha() and c.islower())).sum() if count_upper * 2 > count_lower: return Remediation( name="lower_case", immediate_msg=f"\n- More than a third of your `{column}` column/key is uppercase. Uppercase {column}s tends to perform worse than a mixture of case encountered in normal language. We recommend to lower case the data if that makes sense in your domain. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details", optional_msg=f"Lowercase all your data in column/key `{column}`", optional_fn=lower_case, ) return None def read_any_format( fname: str, fields: list[str] = ["prompt", "completion"] ) -> tuple[pd.DataFrame | None, Remediation]: """ This function will read a file saved in .csv, .json, .txt, .xlsx or .tsv format using pandas. - for .xlsx it will read the first sheet - for .txt it will assume completions and split on newline """ remediation = None necessary_msg = None immediate_msg = None error_msg = None df = None if os.path.isfile(fname): try: if fname.lower().endswith(".csv") or fname.lower().endswith(".tsv"): file_extension_str, separator = ("CSV", ",") if fname.lower().endswith(".csv") else ("TSV", "\t") immediate_msg = ( f"\n- Based on your file extension, your file is formatted as a {file_extension_str} file" ) necessary_msg = f"Your format `{file_extension_str}` will be converted to `JSONL`" df = pd.read_csv(fname, sep=separator, dtype=str).fillna("") elif fname.lower().endswith(".xlsx"): immediate_msg = "\n- Based on your file extension, your file is formatted as an Excel file" necessary_msg = "Your format `XLSX` will be converted to `JSONL`" xls = pd.ExcelFile(fname) sheets = xls.sheet_names if len(sheets) > 1: immediate_msg += "\n- Your Excel file contains more than one sheet. Please either save as csv or ensure all data is present in the first sheet. WARNING: Reading only the first sheet..." df = pd.read_excel(fname, dtype=str).fillna("") elif fname.lower().endswith(".txt"): immediate_msg = "\n- Based on your file extension, you provided a text file" necessary_msg = "Your format `TXT` will be converted to `JSONL`" with open(fname, "r") as f: content = f.read() df = pd.DataFrame( [["", line] for line in content.split("\n")], columns=fields, dtype=str, ).fillna("") elif fname.lower().endswith(".jsonl"): df = pd.read_json(fname, lines=True, dtype=str).fillna("") # type: ignore if len(df) == 1: # type: ignore # this is NOT what we expect for a .jsonl file immediate_msg = "\n- Your JSONL file appears to be in a JSON format. Your file will be converted to JSONL format" necessary_msg = "Your format `JSON` will be converted to `JSONL`" df = pd.read_json(fname, dtype=str).fillna("") # type: ignore else: pass # this is what we expect for a .jsonl file elif fname.lower().endswith(".json"): try: # to handle case where .json file is actually a .jsonl file df = pd.read_json(fname, lines=True, dtype=str).fillna("") # type: ignore if len(df) == 1: # type: ignore # this code path corresponds to a .json file that has one line df = pd.read_json(fname, dtype=str).fillna("") # type: ignore else: # this is NOT what we expect for a .json file immediate_msg = "\n- Your JSON file appears to be in a JSONL format. Your file will be converted to JSONL format" necessary_msg = "Your format `JSON` will be converted to `JSONL`" except ValueError: # this code path corresponds to a .json file that has multiple lines (i.e. it is indented) df = pd.read_json(fname, dtype=str).fillna("") # type: ignore else: error_msg = ( "Your file must have one of the following extensions: .CSV, .TSV, .XLSX, .TXT, .JSON or .JSONL" ) if "." in fname: error_msg += f" Your file `{fname}` ends with the extension `.{fname.split('.')[-1]}` which is not supported." else: error_msg += f" Your file `{fname}` is missing a file extension." except (ValueError, TypeError): file_extension_str = fname.split(".")[-1].upper() error_msg = f"Your file `{fname}` does not appear to be in valid {file_extension_str} format. Please ensure your file is formatted as a valid {file_extension_str} file." else: error_msg = f"File {fname} does not exist." remediation = Remediation( name="read_any_format", necessary_msg=necessary_msg, immediate_msg=immediate_msg, error_msg=error_msg, ) return df, remediation def format_inferrer_validator(df: pd.DataFrame) -> Remediation: """ This validator will infer the likely fine-tuning format of the data, and display it to the user if it is classification. It will also suggest to use ada and explain train/validation split benefits. """ ft_type = infer_task_type(df) immediate_msg = None if ft_type == "classification": immediate_msg = f"\n- Based on your data it seems like you're trying to fine-tune a model for {ft_type}\n- For classification, we recommend you try one of the faster and cheaper models, such as `ada`\n- For classification, you can estimate the expected model performance by keeping a held out dataset, which is not used for training" return Remediation(name="num_examples", immediate_msg=immediate_msg) def apply_necessary_remediation(df: OptionalDataFrameT, remediation: Remediation) -> OptionalDataFrameT: """ This function will apply a necessary remediation to a dataframe, or print an error message if one exists. """ if remediation.error_msg is not None: sys.stderr.write(f"\n\nERROR in {remediation.name} validator: {remediation.error_msg}\n\nAborting...") sys.exit(1) if remediation.immediate_msg is not None: sys.stdout.write(remediation.immediate_msg) if remediation.necessary_fn is not None: df = remediation.necessary_fn(df) return df def accept_suggestion(input_text: str, auto_accept: bool) -> bool: sys.stdout.write(input_text) if auto_accept: sys.stdout.write("Y\n") return True return input().lower() != "n" def apply_optional_remediation( df: pd.DataFrame, remediation: Remediation, auto_accept: bool ) -> tuple[pd.DataFrame, bool]: """ This function will apply an optional remediation to a dataframe, based on the user input. """ optional_applied = False input_text = f"- [Recommended] {remediation.optional_msg} [Y/n]: " if remediation.optional_msg is not None: if accept_suggestion(input_text, auto_accept): assert remediation.optional_fn is not None df = remediation.optional_fn(df) optional_applied = True if remediation.necessary_msg is not None: sys.stdout.write(f"- [Necessary] {remediation.necessary_msg}\n") return df, optional_applied def estimate_fine_tuning_time(df: pd.DataFrame) -> None: """ Estimate the time it'll take to fine-tune the dataset """ ft_format = infer_task_type(df) expected_time = 1.0 if ft_format == "classification": num_examples = len(df) expected_time = num_examples * 1.44 else: size = df.memory_usage(index=True).sum() expected_time = size * 0.0515 def format_time(time: float) -> str: if time < 60: return f"{round(time, 2)} seconds" elif time < 3600: return f"{round(time / 60, 2)} minutes" elif time < 86400: return f"{round(time / 3600, 2)} hours" else: return f"{round(time / 86400, 2)} days" time_string = format_time(expected_time + 140) sys.stdout.write( f"Once your model starts training, it'll approximately take {time_string} to train a `curie` model, and less for `ada` and `babbage`. Queue will approximately take half an hour per job ahead of you.\n" ) def get_outfnames(fname: str, split: bool) -> list[str]: suffixes = ["_train", "_valid"] if split else [""] i = 0 while True: index_suffix = f" ({i})" if i > 0 else "" candidate_fnames = [f"{os.path.splitext(fname)[0]}_prepared{suffix}{index_suffix}.jsonl" for suffix in suffixes] if not any(os.path.isfile(f) for f in candidate_fnames): return candidate_fnames i += 1 def get_classification_hyperparams(df: pd.DataFrame) -> tuple[int, object]: n_classes = df.completion.nunique() pos_class = None if n_classes == 2: pos_class = df.completion.value_counts().index[0] return n_classes, pos_class def write_out_file(df: pd.DataFrame, fname: str, any_remediations: bool, auto_accept: bool) -> None: """ This function will write out a dataframe to a file, if the user would like to proceed, and also offer a fine-tuning command with the newly created file. For classification it will optionally ask the user if they would like to split the data into train/valid files, and modify the suggested command to include the valid set. """ ft_format = infer_task_type(df) common_prompt_suffix = get_common_xfix(df.prompt, xfix="suffix") common_completion_suffix = get_common_xfix(df.completion, xfix="suffix") split = False input_text = "- [Recommended] Would you like to split into training and validation set? [Y/n]: " if ft_format == "classification": if accept_suggestion(input_text, auto_accept): split = True additional_params = "" common_prompt_suffix_new_line_handled = common_prompt_suffix.replace("\n", "\\n") common_completion_suffix_new_line_handled = common_completion_suffix.replace("\n", "\\n") optional_ending_string = ( f' Make sure to include `stop=["{common_completion_suffix_new_line_handled}"]` so that the generated texts ends at the expected place.' if len(common_completion_suffix_new_line_handled) > 0 else "" ) input_text = "\n\nYour data will be written to a new JSONL file. Proceed [Y/n]: " if not any_remediations and not split: sys.stdout.write( f'\nYou can use your file for fine-tuning:\n> openai api fine_tunes.create -t "{fname}"{additional_params}\n\nAfter you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt.{optional_ending_string}\n' ) estimate_fine_tuning_time(df) elif accept_suggestion(input_text, auto_accept): fnames = get_outfnames(fname, split) if split: assert len(fnames) == 2 and "train" in fnames[0] and "valid" in fnames[1] MAX_VALID_EXAMPLES = 1000 n_train = max(len(df) - MAX_VALID_EXAMPLES, int(len(df) * 0.8)) df_train = df.sample(n=n_train, random_state=42) df_valid = df.drop(df_train.index) df_train[["prompt", "completion"]].to_json( # type: ignore fnames[0], lines=True, orient="records", force_ascii=False, indent=None ) df_valid[["prompt", "completion"]].to_json( fnames[1], lines=True, orient="records", force_ascii=False, indent=None ) n_classes, pos_class = get_classification_hyperparams(df) additional_params += " --compute_classification_metrics" if n_classes == 2: additional_params += f' --classification_positive_class "{pos_class}"' else: additional_params += f" --classification_n_classes {n_classes}" else: assert len(fnames) == 1 df[["prompt", "completion"]].to_json( fnames[0], lines=True, orient="records", force_ascii=False, indent=None ) # Add -v VALID_FILE if we split the file into train / valid files_string = ("s" if split else "") + " to `" + ("` and `".join(fnames)) valid_string = f' -v "{fnames[1]}"' if split else "" separator_reminder = ( "" if len(common_prompt_suffix_new_line_handled) == 0 else f"After you’ve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt." ) sys.stdout.write( f'\nWrote modified file{files_string}`\nFeel free to take a look!\n\nNow use that file when fine-tuning:\n> openai api fine_tunes.create -t "{fnames[0]}"{valid_string}{additional_params}\n\n{separator_reminder}{optional_ending_string}\n' ) estimate_fine_tuning_time(df) else: sys.stdout.write("Aborting... did not write the file\n") def infer_task_type(df: pd.DataFrame) -> str: """ Infer the likely fine-tuning task type from the data """ CLASSIFICATION_THRESHOLD = 3 # min_average instances of each class if sum(df.prompt.str.len()) == 0: return "open-ended generation" if len(df.completion.unique()) < len(df) / CLASSIFICATION_THRESHOLD: return "classification" return "conditional generation" def get_common_xfix(series: Any, xfix: str = "suffix") -> str: """ Finds the longest common suffix or prefix of all the values in a series """ common_xfix = "" while True: common_xfixes = ( series.str[-(len(common_xfix) + 1) :] if xfix == "suffix" else series.str[: len(common_xfix) + 1] ) # first few or last few characters if common_xfixes.nunique() != 1: # we found the character at which we don't have a unique xfix anymore break elif common_xfix == common_xfixes.values[0]: # the entire first row is a prefix of every other row break else: # the first or last few characters are still common across all rows - let's try to add one more common_xfix = common_xfixes.values[0] return common_xfix Validator: TypeAlias = "Callable[[pd.DataFrame], Remediation | None]" def get_validators() -> list[Validator]: return [ num_examples_validator, lambda x: necessary_column_validator(x, "prompt"), lambda x: necessary_column_validator(x, "completion"), additional_column_validator, non_empty_field_validator, format_inferrer_validator, duplicated_rows_validator, long_examples_validator, lambda x: lower_case_validator(x, "prompt"), lambda x: lower_case_validator(x, "completion"), common_prompt_suffix_validator, common_prompt_prefix_validator, common_completion_prefix_validator, common_completion_suffix_validator, completions_space_start_validator, ] def apply_validators( df: pd.DataFrame, fname: str, remediation: Remediation | None, validators: list[Validator], auto_accept: bool, write_out_file_func: Callable[..., Any], ) -> None: optional_remediations: list[Remediation] = [] if remediation is not None: optional_remediations.append(remediation) for validator in validators: remediation = validator(df) if remediation is not None: optional_remediations.append(remediation) df = apply_necessary_remediation(df, remediation) any_optional_or_necessary_remediations = any( [ remediation for remediation in optional_remediations if remediation.optional_msg is not None or remediation.necessary_msg is not None ] ) any_necessary_applied = any( [remediation for remediation in optional_remediations if remediation.necessary_msg is not None] ) any_optional_applied = False if any_optional_or_necessary_remediations: sys.stdout.write("\n\nBased on the analysis we will perform the following actions:\n") for remediation in optional_remediations: df, optional_applied = apply_optional_remediation(df, remediation, auto_accept) any_optional_applied = any_optional_applied or optional_applied else: sys.stdout.write("\n\nNo remediations found.\n") any_optional_or_necessary_applied = any_optional_applied or any_necessary_applied write_out_file_func(df, fname, any_optional_or_necessary_applied, auto_accept)