238 lines
7.8 KiB
Python
238 lines
7.8 KiB
Python
import os
|
||
import json
|
||
from typing import List, Iterable
|
||
import openai
|
||
from devchat._cli.utils import init_dir
|
||
from .namespace import Namespace
|
||
from .command_parser import CommandParser, Command
|
||
from .command_runner import CommandRunner
|
||
|
||
|
||
def _load_command(command: str):
|
||
_, user_chat_dir = init_dir()
|
||
workflows_dir = os.path.join(user_chat_dir, 'workflows')
|
||
if not os.path.exists(workflows_dir):
|
||
return None
|
||
if not os.path.isdir(workflows_dir):
|
||
return None
|
||
|
||
namespace = Namespace(workflows_dir)
|
||
commander = CommandParser(namespace)
|
||
|
||
cmd = commander.parse(command)
|
||
if not cmd:
|
||
return None
|
||
return cmd
|
||
|
||
|
||
def _load_commands() -> List[Command]:
|
||
_, user_chat_dir = init_dir()
|
||
workflows_dir = os.path.join(user_chat_dir, 'workflows')
|
||
if not os.path.exists(workflows_dir):
|
||
return None
|
||
if not os.path.isdir(workflows_dir):
|
||
return None
|
||
|
||
namespace = Namespace(workflows_dir)
|
||
commander = CommandParser(namespace)
|
||
command_names = namespace.list_names("", True)
|
||
|
||
commands = []
|
||
for name in command_names:
|
||
cmd = commander.parse(name)
|
||
if not cmd:
|
||
continue
|
||
commands.append((name, cmd))
|
||
|
||
return commands
|
||
|
||
|
||
def _create_tool(command_name:str, command: Command) -> dict:
|
||
properties = {}
|
||
required = []
|
||
if command.parameters:
|
||
for key, value in command.parameters.items():
|
||
properties[key] = {}
|
||
for key1, value1 in value.dict().items():
|
||
if key1 not in ['type', 'description', 'enum'] or value1 is None:
|
||
continue
|
||
properties[key][key1] = value1
|
||
required.append(key)
|
||
elif command.steps[0]['run'].find('$input') > 0:
|
||
properties['input'] = {
|
||
"type": "string",
|
||
"description": "input text"
|
||
}
|
||
required.append('input')
|
||
|
||
return {
|
||
"type": "function",
|
||
"function": {
|
||
"name": command_name,
|
||
"description": command.description,
|
||
"parameters": {
|
||
"type": "object",
|
||
"properties": properties,
|
||
"required": required,
|
||
},
|
||
}
|
||
}
|
||
|
||
|
||
def _create_tools() -> List[dict]:
|
||
commands = _load_commands()
|
||
return [_create_tool(command[0], command[1]) for command in commands if command[1].steps]
|
||
|
||
|
||
def _call_gpt(messages: List[dict], # messages passed to GPT
|
||
model_name: str, # GPT model name
|
||
use_function_calling: bool) -> dict: # whether to use function calling
|
||
client = openai.OpenAI(
|
||
api_key=os.environ.get("OPENAI_API_KEY", None),
|
||
base_url=os.environ.get("OPENAI_API_BASE", None)
|
||
)
|
||
|
||
tools = [] if not use_function_calling else _create_tools()
|
||
|
||
for try_times in range(3):
|
||
try:
|
||
response: Iterable = client.chat.completions.create(
|
||
messages=messages,
|
||
model=model_name,
|
||
stream=True,
|
||
tools=tools
|
||
)
|
||
|
||
response_result = {'content': None, 'function_name': None, 'parameters': ""}
|
||
for chunk in response: # pylint: disable=E1133
|
||
chunk = chunk.dict()
|
||
delta = chunk["choices"][0]["delta"]
|
||
if 'tool_calls' in delta and delta['tool_calls']:
|
||
tool_call = delta['tool_calls'][0]['function']
|
||
if tool_call.get('name', None):
|
||
response_result["function_name"] = tool_call["name"]
|
||
if tool_call.get("arguments", None):
|
||
response_result["parameters"] += tool_call["arguments"]
|
||
if delta.get('content', None):
|
||
if response_result["content"]:
|
||
response_result["content"] += delta["content"]
|
||
else:
|
||
response_result["content"] = delta["content"]
|
||
print(delta["content"], end='', flush=True)
|
||
if response_result["function_name"]:
|
||
print("``` command_run")
|
||
function_call = {
|
||
'name': response_result["function_name"],
|
||
'arguments': response_result["parameters"]}
|
||
print(json.dumps(function_call, indent=4))
|
||
print("```", flush=True)
|
||
return response_result
|
||
except (ConnectionError, openai.APIConnectionError) as err:
|
||
if try_times == 2:
|
||
print("Connect Exception:", err)
|
||
print(err.strerror)
|
||
return {'content': None, 'function_name': None, 'parameters': ""}
|
||
continue
|
||
except Exception as err:
|
||
print("Exception Error:", err)
|
||
return {'content': None, 'function_name': None, 'parameters': ""}
|
||
return {'content': None, 'function_name': None, 'parameters': ""}
|
||
|
||
|
||
def _create_messages():
|
||
return []
|
||
|
||
|
||
def _call_function(function_name: str, parameters: str, model_name: str):
|
||
"""
|
||
call function by function_name and parameters
|
||
"""
|
||
parameters = json.loads(parameters)
|
||
command_obj = _load_command(function_name)
|
||
runner = CommandRunner(model_name)
|
||
return runner.run_command_with_parameters(command_obj, parameters, "", [])
|
||
|
||
|
||
def _auto_function_calling(history_messages: List[dict], model_name:str):
|
||
"""
|
||
通过function calling方式来回答当前问题。
|
||
function最多被调用4次,必须进行最终答复。
|
||
"""
|
||
function_call_times = 0
|
||
|
||
response = _call_gpt(history_messages, model_name, True)
|
||
while True:
|
||
if response['function_name']:
|
||
# run function
|
||
function_call_times += 1
|
||
print("do function calling", end='\n\n', flush=True)
|
||
function_result = _call_function(
|
||
response['function_name'],
|
||
response['parameters'],
|
||
model_name)
|
||
history_messages.append({
|
||
'role': 'function',
|
||
'content': f'exit code: {function_result[0]} stdout: {function_result[1]}',
|
||
'name': response['function_name']})
|
||
print("after functon call.", end='\n\n', flush=True)
|
||
|
||
# send function result to gpt
|
||
if function_call_times < 5:
|
||
response = _call_gpt(history_messages, model_name, True)
|
||
else:
|
||
response = _call_gpt(history_messages, model_name, False)
|
||
else:
|
||
return response
|
||
|
||
|
||
def _auto_route(history_messages, model_name:str):
|
||
"""
|
||
select which command to run
|
||
"""
|
||
response = _call_gpt(history_messages, model_name, True)
|
||
if response['function_name']:
|
||
return _call_function(
|
||
response['function_name'],
|
||
response['parameters'],
|
||
model_name)
|
||
if response['content']:
|
||
return (0, response['content'])
|
||
return (-1, "")
|
||
|
||
|
||
def run_command(
|
||
model_name: str,
|
||
history_messages: List[dict],
|
||
input_text: str,
|
||
parent_hash: str,
|
||
context_contents: List[str],
|
||
auto_fun: bool):
|
||
"""
|
||
load command config, and then run Command
|
||
"""
|
||
# split input_text by ' ','\n','\t'
|
||
if len(input_text.strip()) == 0:
|
||
return None
|
||
if input_text.strip()[:1] != '/':
|
||
if not (auto_fun and model_name.startswith('gpt-')):
|
||
return None
|
||
|
||
# response = _auto_function_calling(history_messages, model_name)
|
||
# return response['content']
|
||
return _auto_route(history_messages, model_name)
|
||
commands = input_text.split()
|
||
command = commands[0][1:]
|
||
|
||
command_obj = _load_command(command)
|
||
if not command_obj or not command_obj.steps:
|
||
return None
|
||
|
||
runner = CommandRunner(model_name)
|
||
return runner.run_command(
|
||
command,
|
||
command_obj,
|
||
history_messages,
|
||
input_text,
|
||
parent_hash,
|
||
context_contents)
|