151 lines
5.2 KiB
Python

from __future__ import annotations
import inspect
from typing import Any, TypeVar
from typing_extensions import TypeGuard
import pydantic
from .._types import NOT_GIVEN
from .._utils import is_dict as _is_dict, is_list
from .._compat import PYDANTIC_V2, model_json_schema
_T = TypeVar("_T")
def to_strict_json_schema(model: type[pydantic.BaseModel] | pydantic.TypeAdapter[Any]) -> dict[str, Any]:
if inspect.isclass(model) and is_basemodel_type(model):
schema = model_json_schema(model)
elif PYDANTIC_V2 and isinstance(model, pydantic.TypeAdapter):
schema = model.json_schema()
else:
raise TypeError(f"Non BaseModel types are only supported with Pydantic v2 - {model}")
return _ensure_strict_json_schema(schema, path=(), root=schema)
def _ensure_strict_json_schema(
json_schema: object,
*,
path: tuple[str, ...],
root: dict[str, object],
) -> dict[str, Any]:
"""Mutates the given JSON schema to ensure it conforms to the `strict` standard
that the API expects.
"""
if not is_dict(json_schema):
raise TypeError(f"Expected {json_schema} to be a dictionary; path={path}")
defs = json_schema.get("$defs")
if is_dict(defs):
for def_name, def_schema in defs.items():
_ensure_strict_json_schema(def_schema, path=(*path, "$defs", def_name), root=root)
definitions = json_schema.get("definitions")
if is_dict(definitions):
for definition_name, definition_schema in definitions.items():
_ensure_strict_json_schema(definition_schema, path=(*path, "definitions", definition_name), root=root)
typ = json_schema.get("type")
if typ == "object" and "additionalProperties" not in json_schema:
json_schema["additionalProperties"] = False
# object types
# { 'type': 'object', 'properties': { 'a': {...} } }
properties = json_schema.get("properties")
if is_dict(properties):
json_schema["required"] = [prop for prop in properties.keys()]
json_schema["properties"] = {
key: _ensure_strict_json_schema(prop_schema, path=(*path, "properties", key), root=root)
for key, prop_schema in properties.items()
}
# arrays
# { 'type': 'array', 'items': {...} }
items = json_schema.get("items")
if is_dict(items):
json_schema["items"] = _ensure_strict_json_schema(items, path=(*path, "items"), root=root)
# unions
any_of = json_schema.get("anyOf")
if is_list(any_of):
json_schema["anyOf"] = [
_ensure_strict_json_schema(variant, path=(*path, "anyOf", str(i)), root=root)
for i, variant in enumerate(any_of)
]
# intersections
all_of = json_schema.get("allOf")
if is_list(all_of):
if len(all_of) == 1:
json_schema.update(_ensure_strict_json_schema(all_of[0], path=(*path, "allOf", "0"), root=root))
json_schema.pop("allOf")
else:
json_schema["allOf"] = [
_ensure_strict_json_schema(entry, path=(*path, "allOf", str(i)), root=root)
for i, entry in enumerate(all_of)
]
# strip `None` defaults as there's no meaningful distinction here
# the schema will still be `nullable` and the model will default
# to using `None` anyway
if json_schema.get("default", NOT_GIVEN) is None:
json_schema.pop("default")
# we can't use `$ref`s if there are also other properties defined, e.g.
# `{"$ref": "...", "description": "my description"}`
#
# so we unravel the ref
# `{"type": "string", "description": "my description"}`
ref = json_schema.get("$ref")
if ref and has_more_than_n_keys(json_schema, 1):
assert isinstance(ref, str), f"Received non-string $ref - {ref}"
resolved = resolve_ref(root=root, ref=ref)
if not is_dict(resolved):
raise ValueError(f"Expected `$ref: {ref}` to resolved to a dictionary but got {resolved}")
# properties from the json schema take priority over the ones on the `$ref`
json_schema.update({**resolved, **json_schema})
json_schema.pop("$ref")
return json_schema
def resolve_ref(*, root: dict[str, object], ref: str) -> object:
if not ref.startswith("#/"):
raise ValueError(f"Unexpected $ref format {ref!r}; Does not start with #/")
path = ref[2:].split("/")
resolved = root
for key in path:
value = resolved[key]
assert is_dict(value), f"encountered non-dictionary entry while resolving {ref} - {resolved}"
resolved = value
return resolved
def is_basemodel_type(typ: type) -> TypeGuard[type[pydantic.BaseModel]]:
return issubclass(typ, pydantic.BaseModel)
def is_dataclass_like_type(typ: type) -> bool:
"""Returns True if the given type likely used `@pydantic.dataclass`"""
return hasattr(typ, "__pydantic_config__")
def is_dict(obj: object) -> TypeGuard[dict[str, object]]:
# just pretend that we know there are only `str` keys
# as that check is not worth the performance cost
return _is_dict(obj)
def has_more_than_n_keys(obj: dict[str, object], n: int) -> bool:
i = 0
for _ in obj.keys():
i += 1
if i > n:
return True
return False