rspec/rules/S6983/python/rule.adoc

70 lines
2.3 KiB
Plaintext
Raw Normal View History

This rule raises an issue when a `torch.utils.data.Dataloader` is instantiated without specifying the `num_workers` parameter.
== Why is this an issue?
In the PyTorch library, the data loaders are used to provide an interface where common operations such as batching can be implemented.
It is also possible to parallelize the data loading process by using multiple worker processes.
This can improve performance by increasing the number of batches being fetched in parallel, at the cost of higher memory usage.
This performance increase can also be attributed to avoiding the Global Interpreter Lock (GIL) in the Python interpreter.
== How to fix it
Specify the `num_workers` parameter when instantiating the `torch.utils.data.Dataloader` object.
The default value of `0` will use the main process to load the data, and might be faster for small datasets that can fit completely in memory.
For larger datasets, it is recommended to use a value of `1` or higher to parallelize the data loading process.
=== Code examples
==== Noncompliant code example
[source,python,diff-id=1,diff-type=noncompliant]
----
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
train_dataset = datasets.MNIST(root='data', train=True, transform=ToTensor())
train_data_loader = DataLoader(train_dataset, batch_size=32)# Noncompliant: the num_workers parameter is not specified
----
==== Compliant solution
[source,python,diff-id=1,diff-type=compliant]
----
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
train_dataset = datasets.MNIST(root='data', train=True, transform=ToTensor())
train_data_loader = DataLoader(train_dataset, batch_size=32, num_workers=4)
----
== Resources
=== Documentation
* PyTorch documentation - https://pytorch.org/docs/stable/data.html#single-and-multi-process-data-loading[Single- and Multi-process Data Loading]
* PyTorch documentation - https://pytorch.org/tutorials/beginner/basics/data_tutorial.html[Datasets and DataLoaders]
ifdef::env-github,rspecator-view[]
(visible only on this page)
== Implementation specification
=== Message
Primary : Specify the `num_workers` parameter.
=== Issue location
Primary : Name of the instantiation
=== Quickfix
Fill in with the default parameter
endif::env-github,rspecator-view[]