Create rule S6929: The axis argument should be specified when using TensorFlow's reduction operations (#3644)
* Create rule S6929 * Create rule S6929: The axis argument should be specified when using TensorFlow's reduction operations * Fix after review --------- Co-authored-by: joke1196 <joke1196@users.noreply.github.com> Co-authored-by: David Kunzmann <david.kunzmann@sonarsource.com>
This commit is contained in:
parent
c6d7ba2fa6
commit
2b30d4d2bf
2
rules/S6929/metadata.json
Normal file
2
rules/S6929/metadata.json
Normal file
@ -0,0 +1,2 @@
|
||||
{
|
||||
}
|
24
rules/S6929/python/metadata.json
Normal file
24
rules/S6929/python/metadata.json
Normal file
@ -0,0 +1,24 @@
|
||||
{
|
||||
"title": "The axis argument should be specified when using TensorFlow's reduction operations",
|
||||
"type": "CODE_SMELL",
|
||||
"status": "ready",
|
||||
"remediation": {
|
||||
"func": "Constant\/Issue",
|
||||
"constantCost": "5min"
|
||||
},
|
||||
"tags": [
|
||||
],
|
||||
"defaultSeverity": "Major",
|
||||
"ruleSpecification": "RSPEC-6929",
|
||||
"sqKey": "S6929",
|
||||
"scope": "All",
|
||||
"defaultQualityProfiles": ["Sonar way"],
|
||||
"quickfix": "unknown",
|
||||
"code": {
|
||||
"impacts": {
|
||||
"MAINTAINABILITY": "MEDIUM",
|
||||
"RELIABILITY": "HIGH"
|
||||
},
|
||||
"attribute": "CLEAR"
|
||||
}
|
||||
}
|
104
rules/S6929/python/rule.adoc
Normal file
104
rules/S6929/python/rule.adoc
Normal file
@ -0,0 +1,104 @@
|
||||
This rule raises an issue when the axis argument is not provided to TensorFlow's reduction operations.
|
||||
|
||||
== Why is this an issue?
|
||||
|
||||
The result of TensorFlow's reduction operations (i.e. ``tf.math.reduce_sum``, ``tf.math.reduce_std``),
|
||||
highly depends on the shape of the Tensor provided.
|
||||
|
||||
[source,python]
|
||||
----
|
||||
import tensorflow as tf
|
||||
|
||||
x = tf.constant([[1, 1, 1], [1, 1, 1]])
|
||||
tf.math.reduce_sum(x)
|
||||
----
|
||||
|
||||
In the example above the reduction of the 2 dimensional array will return the value `6` as all the elements are added together.
|
||||
By default TensorFlow's reduction operations are applied across all axis. When specifying an axis the result will be completely different.
|
||||
|
||||
[source,python]
|
||||
----
|
||||
import tensorflow as tf
|
||||
|
||||
x = tf.constant([[1, 1, 1], [1, 1, 1]])
|
||||
tf.math.reduce_sum(x, axis=0)
|
||||
----
|
||||
|
||||
Here the result will be `[2,2,2]` as the reduction is applied only on the axis 0.
|
||||
|
||||
TensorFlow's default behavior can be confusing, especially when the reducing array of different shapes.
|
||||
|
||||
Considering the following example:
|
||||
|
||||
[source,python]
|
||||
----
|
||||
import tensorflow as tf
|
||||
|
||||
x = tf.constant([[1], [2]])
|
||||
y = tf.constant([1, 2])
|
||||
tf.math.reduce_sum(x + y)
|
||||
----
|
||||
|
||||
Here the result will be `12` instead of the `6` that could be expected. This is because the implicit broadcasting reshapes the
|
||||
first array to `[[1,1], [2,2]]` which is then added to the `y` array `[1,2]` resulting in ``[[2,3], [3,4]]``. As the
|
||||
reduction happen across all dimensions the result is then ``2 + 3 + 3 + 4 = 12``. It is not clear by looking at the example
|
||||
if this was intentional or if the user made a mistake.
|
||||
|
||||
This is why a good practice is to always specify the axis on which to perform the reduction.
|
||||
|
||||
For example:
|
||||
|
||||
[source,python]
|
||||
----
|
||||
import tensorflow as tf
|
||||
|
||||
x = tf.constant([[1], [2]])
|
||||
y = tf.constant([1, 2])
|
||||
tf.math.reduce_sum(x + y, axis=0)
|
||||
----
|
||||
|
||||
In the example above, specifying the axis clarifies the intent, as the result now is ``[5, 7]``. If the intent was to effectively
|
||||
reduce across all dimensions the user should provide the list of axis `axis=[0,1]`
|
||||
or clearly state the default behavior should be applied with ``axis=None``.
|
||||
|
||||
== How to fix it
|
||||
|
||||
To fix this issue provide the axis argument when using a TensorFlow reduction operation such as ``tf.math.reduce_sum``, ``tf.math.reduce_prod``, ``tf.math.reduce_mean``, etc...
|
||||
|
||||
=== Code examples
|
||||
|
||||
==== Noncompliant code example
|
||||
|
||||
[source,python,diff-id=1,diff-type=noncompliant]
|
||||
----
|
||||
import tensorflow as tf
|
||||
|
||||
x = tf.constant([[1, 1, 1], [1, 1, 1]])
|
||||
tf.math.reduce_sum(x) # Noncompliant: the axis arguments defaults to None
|
||||
----
|
||||
|
||||
==== Compliant solution
|
||||
|
||||
[source,python,diff-id=1,diff-type=compliant]
|
||||
----
|
||||
import tensorflow as tf
|
||||
|
||||
x = tf.constant([[1, 1, 1], [1, 1, 1]])
|
||||
tf.math.reduce_sum(x, axis=0) # Compliant: the reduction will happen only on the axis 0, resulting in `[2,2,2]`
|
||||
----
|
||||
|
||||
|
||||
== Resources
|
||||
=== Documentation
|
||||
|
||||
* TensorFlow Documentation - https://www.tensorflow.org/api_docs/python/tf/math/reduce_max[tf.math.reduce_max reference]
|
||||
* TensorFlow Documentation - https://www.tensorflow.org/api_docs/python/tf/math/reduce_mean[tf.math.reduce_mean reference]
|
||||
* TensorFlow Documentation - https://www.tensorflow.org/api_docs/python/tf/math/reduce_min[tf.math.reduce_min reference]
|
||||
* TensorFlow Documentation - https://www.tensorflow.org/api_docs/python/tf/math/reduce_prod[tf.math.reduce_prod reference]
|
||||
* TensorFlow Documentation - https://www.tensorflow.org/api_docs/python/tf/math/reduce_std[tf.math.reduce_std reference]
|
||||
* TensorFlow Documentation - https://www.tensorflow.org/api_docs/python/tf/math/reduce_sum[tf.math.reduce_sum reference]
|
||||
* TensorFlow Documentation - https://www.tensorflow.org/api_docs/python/tf/math/reduce_variance[tf.math.reduce_variance reference]
|
||||
|
||||
=== Articles & blog posts
|
||||
|
||||
* Vahidk Developers Guide - https://github.com/vahidk/EffectiveTensorflow?tab=readme-ov-file#broadcasting-the-good-and-the-ugly[Broadcasting the good and the ugly]
|
Loading…
x
Reference in New Issue
Block a user