== How to fix it in Numpy To fix this issue, provide a predictable seed to the random number generator. === Code examples ==== Noncompliant code example [source,python,diff-id=1,diff-type=noncompliant] ---- import numpy as np def foo(): generator = np.random.default_rng() # Noncompliant: no seed parameter is provided x = generator.uniform() ---- ==== Compliant solution [source,python,diff-id=1,diff-type=compliant] ---- import numpy as np def foo(): generator = np.random.default_rng(42) # Compliant x = generator.uniform() ----