workflows/unit_tests/propose_test.py

147 lines
4.5 KiB
Python
Raw Normal View History

2024-01-05 12:27:57 +08:00
import json
from functools import partial
from typing import List, Optional
from devchat.llm.openai import chat_completion_no_stream_return_json
2024-03-06 15:35:21 +08:00
from find_context import Context
from llm_conf import (
CONTEXT_SIZE,
DEFAULT_CONTEXT_SIZE,
DEFAULT_ENCODING,
USE_USER_MODEL,
USER_LLM_MODEL,
)
2024-01-05 12:27:57 +08:00
from model import FuncToTest, TokenBudgetExceededException
from openai_util import create_chat_completion_content
from prompts import PROPOSE_TEST_PROMPT
from tools.tiktoken_util import get_encoding
2023-12-18 20:46:16 +08:00
MODEL = USER_LLM_MODEL if USE_USER_MODEL else "gpt-4-turbo-preview" # "gpt-3.5-turbo"
ENCODING = (
get_encoding(DEFAULT_ENCODING) # Use default encoding as an approximation
if USE_USER_MODEL
else get_encoding("cl100k_base")
)
TOKEN_BUDGET = int(CONTEXT_SIZE.get(MODEL, DEFAULT_CONTEXT_SIZE) * 0.95)
def _mk_user_msg(
user_prompt: str,
func_to_test: FuncToTest,
2024-03-06 15:35:21 +08:00
contexts: List[Context],
chat_language: str,
) -> str:
"""
Create a user message to be sent to the model within the token budget.
"""
func_content = f"function code\n```\n{func_to_test.func_content}\n```\n"
class_content = ""
if func_to_test.container_content is not None:
class_content = f"class code\n```\n{func_to_test.container_content}\n```\n"
context_content = ""
2024-03-06 15:35:21 +08:00
if contexts:
context_content = "\n\nrelevant context\n\n"
context_content += "\n\n".join([str(c) for c in contexts])
context_content += "\n\n"
# Prepare a list of user messages to fit the token budget
# by adjusting the relevant content
relevant_content_fmt = partial(
PROPOSE_TEST_PROMPT.format,
user_prompt=user_prompt,
function_name=func_to_test.func_name,
file_path=func_to_test.file_path,
chat_language=chat_language,
)
# 0. func content & class content & context content
msg_0 = relevant_content_fmt(
relevant_content="\n".join([func_content, class_content, context_content]),
)
# 1. func content & class content
msg_1 = relevant_content_fmt(
relevant_content="\n".join([func_content, class_content]),
)
# 2. func content only
msg_2 = relevant_content_fmt(
relevant_content=func_content,
)
prioritized_msgs = [msg_0, msg_1, msg_2]
for msg in prioritized_msgs:
token_count = len(ENCODING.encode(msg, disallowed_special=()))
if token_count <= TOKEN_BUDGET:
return msg
# Even func content exceeds the token budget
raise TokenBudgetExceededException(
f"Token budget exceeded while proposing test cases for <{func_to_test}>. "
f"({token_count}/{TOKEN_BUDGET})"
)
2023-12-18 20:46:16 +08:00
def propose_test(
user_prompt: str,
func_to_test: FuncToTest,
2024-03-06 15:35:21 +08:00
contexts: Optional[List[Context]] = None,
chat_language: str = "English",
2023-12-18 20:46:16 +08:00
) -> List[str]:
"""Propose test cases for a specified function based on a user prompt
Args:
user_prompt (str): The prompt or description for which test cases need to be generated.
function_name (str): The name of the function to generate test cases for.
file_path (str): The absolute path to the file containing the target function for which
test cases will be generated.
2023-12-18 20:46:16 +08:00
Returns:
List[str]: A list of test case descriptions.
"""
2024-03-06 15:35:21 +08:00
contexts = contexts or []
user_msg = _mk_user_msg(
2023-12-18 20:46:16 +08:00
user_prompt=user_prompt,
func_to_test=func_to_test,
2024-03-06 15:35:21 +08:00
contexts=contexts,
chat_language=chat_language,
2023-12-18 20:46:16 +08:00
)
json_res = {}
if USE_USER_MODEL:
# Use the wrapped api parameters
2024-03-13 10:58:07 +08:00
json_res = (
chat_completion_no_stream_return_json(
messages=[{"role": "user", "content": user_msg}],
llm_config={
"model": MODEL,
"temperature": 0.1,
},
)
or {}
)
else:
# Use the openai api parameters
content = create_chat_completion_content(
model=MODEL,
messages=[{"role": "user", "content": user_msg}],
response_format={"type": "json_object"},
temperature=0.1,
)
json_res = json.loads(content)
cases = json_res.get("test_cases", [])
2023-12-18 20:46:16 +08:00
descriptions = []
for case in cases:
description = case.get("description", None)
category = case.get("category", None)
2023-12-18 20:46:16 +08:00
if description:
if category:
descriptions.append(category + ": " + description)
else:
descriptions.append(description)
2023-12-18 20:46:16 +08:00
return descriptions