workflows/gen_ut/propose_test.py

64 lines
1.8 KiB
Python
Raw Normal View History

from typing import List
2023-12-18 20:46:16 +08:00
import tiktoken
import json
from openai_util import create_chat_completion_content
from prompts import PROPOSE_TEST_PROMPT
2023-12-18 20:46:16 +08:00
MODEL = "gpt-3.5-turbo-1106"
# MODEL = "gpt-4-1106-preview"
2023-12-18 20:46:16 +08:00
def propose_test(
repo_root: str,
user_prompt: str,
function_name: str,
function_content: str,
2023-12-18 20:46:16 +08:00
file_path: str,
chat_language: str = "English",
2023-12-18 20:46:16 +08:00
) -> List[str]:
"""Propose test cases for a specified function based on a user prompt
Args:
user_prompt (str): The prompt or description for which test cases need to be generated.
function_name (str): The name of the function to generate test cases for.
file_path (str): The absolute path to the file containing the target function for which
test cases will be generated.
2023-12-18 20:46:16 +08:00
Returns:
List[str]: A list of test case descriptions.
"""
encoding: tiktoken.Encoding = tiktoken.encoding_for_model(MODEL)
token_budget = 16000 * 0.9
user_msg = PROPOSE_TEST_PROMPT.format(
user_prompt=user_prompt,
function_name=function_name,
file_path=file_path,
function_content=function_content,
chat_language=chat_language,
2023-12-18 20:46:16 +08:00
)
tokens = len(encoding.encode(user_msg))
if tokens > token_budget:
return f"Token budget exceeded while generating test cases. ({tokens}/{token_budget})"
content = create_chat_completion_content(
2023-12-18 20:46:16 +08:00
model=MODEL,
messages=[{"role": "user", "content": user_msg}],
response_format={"type": "json_object"},
temperature=0.1,
)
cases = json.loads(content).get("test_cases", [])
descriptions = []
for case in cases:
description = case.get("description", None)
if description:
descriptions.append(description)
2023-12-18 20:46:16 +08:00
return descriptions