101 lines
2.8 KiB
Python
101 lines
2.8 KiB
Python
![]() |
import os
|
||
|
from pathlib import Path
|
||
|
from typing import List, Optional
|
||
|
|
||
|
import tiktoken
|
||
|
|
||
|
from chat.ask_codebase.tools.retrieve_file_content import retrieve_file_content
|
||
|
from chat.util.openai_util import create_chat_completion
|
||
|
|
||
|
|
||
|
MODEL = "gpt-4-1106-preview"
|
||
|
WRITE_TESTS_PROMPT = """
|
||
|
You're an advanced AI test case generator.
|
||
|
Given a target function, some reference test code, and a list of specific test case descriptions, write the test cases in code.
|
||
|
Each test case should be self-contained and executable.
|
||
|
Use the content of the reference test cases as a model, ensuring you use the same test framework and mock library,
|
||
|
and apply comparable mocking strategies and best practices.
|
||
|
|
||
|
|
||
|
The target function is {function_name}, located in the file {file_path}.
|
||
|
Here's the source code of the function:
|
||
|
```
|
||
|
{function_str}
|
||
|
```
|
||
|
Content of reference test code:
|
||
|
|
||
|
{reference_tests_str}
|
||
|
|
||
|
Here's the list of test case descriptions:
|
||
|
|
||
|
{test_cases_str}
|
||
|
|
||
|
Answer in the following format:
|
||
|
|
||
|
Test Case 1. <original test case 1 description>
|
||
|
|
||
|
<test case 1 code>
|
||
|
|
||
|
Test Case 2. <original test case 2 description>
|
||
|
|
||
|
<test case 2 code>
|
||
|
"""
|
||
|
|
||
|
|
||
|
def write_tests(
|
||
|
root_path: str,
|
||
|
function_name: str,
|
||
|
file_path: str,
|
||
|
test_cases: List[str],
|
||
|
reference_files: Optional[List[str]] = None,
|
||
|
) -> str:
|
||
|
resolved_file_path = str(Path(root_path) / file_path)
|
||
|
|
||
|
if os.path.exists(resolved_file_path):
|
||
|
# TODO: extract the function from the file
|
||
|
function_str = retrieve_file_content(resolved_file_path, root_path)
|
||
|
else:
|
||
|
return f"File not found: {resolved_file_path}"
|
||
|
|
||
|
encoding: tiktoken.Encoding = tiktoken.encoding_for_model(MODEL)
|
||
|
|
||
|
# cost saving
|
||
|
token_budget = 16000 * 0.9
|
||
|
|
||
|
test_cases_str = ""
|
||
|
for i, test_case in enumerate(test_cases, 1):
|
||
|
test_cases_str += f"{i}. {test_case}\n"
|
||
|
|
||
|
if reference_files:
|
||
|
reference_tests_str = ""
|
||
|
for i, fp in enumerate(reference_files, 1):
|
||
|
reference_test_content = retrieve_file_content(
|
||
|
str(Path(root_path) / fp), root_path
|
||
|
)
|
||
|
reference_tests_str += f"{i}. {fp}\n\n"
|
||
|
reference_tests_str += f"```{reference_test_content}```\n"
|
||
|
else:
|
||
|
reference_tests_str = "No reference test cases provided."
|
||
|
|
||
|
user_msg = WRITE_TESTS_PROMPT.format(
|
||
|
function_name=function_name,
|
||
|
file_path=file_path,
|
||
|
function_str=function_str,
|
||
|
test_cases_str=test_cases_str,
|
||
|
reference_tests_str=reference_tests_str,
|
||
|
)
|
||
|
|
||
|
tokens = len(encoding.encode(user_msg))
|
||
|
if tokens > token_budget:
|
||
|
return "Token budget exceeded while generating test cases."
|
||
|
|
||
|
response = create_chat_completion(
|
||
|
model=MODEL,
|
||
|
messages=[{"role": "user", "content": user_msg}],
|
||
|
temperature=0.1,
|
||
|
)
|
||
|
|
||
|
content = response.choices[0].message.content
|
||
|
|
||
|
return content
|