workflows/libs/llm_api/openai.py

151 lines
4.3 KiB
Python
Raw Normal View History

# flake8: noqa: E402
2024-01-05 12:27:57 +08:00
import json
2023-12-13 14:18:08 +08:00
import os
2024-01-05 12:27:57 +08:00
import re
from typing import Dict, List
import openai
from .pipeline import RetryException, exception_err, exception_handle, parallel, pipeline, retry
def _try_remove_markdown_block_flag(content):
"""
如果content是一个markdown块则删除它的头部```xxx和尾部```
"""
# 定义正则表达式模式用于匹配markdown块的头部和尾部
2023-12-08 18:28:36 +08:00
pattern = r"^\s*```\s*(\w+)\s*\n(.*?)\n\s*```\s*$"
# 使用re模块进行匹配
match = re.search(pattern, content, re.DOTALL | re.MULTILINE)
2023-12-08 18:28:36 +08:00
if match:
# 如果匹配成功则提取出markdown块的内容并返回
2023-12-08 18:38:12 +08:00
_ = match.group(1) # language
markdown_content = match.group(2)
return markdown_content.strip()
else:
# 如果匹配失败,则返回原始内容
return content
2023-12-08 18:28:36 +08:00
def chat_completion_stream_commit(
messages: List[Dict], # [{"role": "user", "content": "hello"}]
llm_config: Dict, # {"model": "...", ...}
):
client = openai.OpenAI(
api_key=os.environ.get("OPENAI_API_KEY", None),
base_url=os.environ.get("OPENAI_API_BASE", None),
)
llm_config["stream"] = True
llm_config["timeout"] = 60
return client.chat.completions.create(messages=messages, **llm_config)
def chat_completion_stream_raw(**kwargs):
client = openai.OpenAI(
api_key=os.environ.get("OPENAI_API_KEY", None),
base_url=os.environ.get("OPENAI_API_BASE", None),
)
kwargs["stream"] = True
kwargs["timeout"] = 60
return client.chat.completions.create(**kwargs)
def stream_out_chunk(chunks):
for chunk in chunks:
chunk_dict = chunk.dict()
delta = chunk_dict["choices"][0]["delta"]
if delta.get("content", None):
print(delta["content"], end="", flush=True)
yield chunk
def retry_timeout(chunks):
try:
for chunk in chunks:
yield chunk
except (openai.APIConnectionError, openai.APITimeoutError) as err:
raise RetryException(err)
def chunk_list(chunks):
return [chunk for chunk in chunks]
def chunks_content(chunks):
content = None
for chunk in chunks:
chunk_dict = chunk.dict()
delta = chunk_dict["choices"][0]["delta"]
if delta.get("content", None):
if content is None:
content = ""
content += delta["content"]
return content
def chunks_call(chunks):
function_name = None
parameters = ""
for chunk in chunks:
chunk = chunk.dict()
delta = chunk["choices"][0]["delta"]
if "tool_calls" in delta and delta["tool_calls"]:
tool_call = delta["tool_calls"][0]["function"]
if tool_call.get("name", None):
function_name = tool_call["name"]
if tool_call.get("arguments", None):
parameters += tool_call["arguments"]
return {"function_name": function_name, "parameters": parameters}
def content_to_json(content):
try:
# json will format as ```json ... ``` in 1106 model
response_content = _try_remove_markdown_block_flag(content)
response_obj = json.loads(response_content)
return response_obj
except json.JSONDecodeError as err:
raise RetryException(err)
except Exception as err:
raise err
def to_dict_content_and_call(content, function_call):
return {"content": content, **function_call}
chat_completion_content = retry(
pipeline(chat_completion_stream_commit, retry_timeout, chunks_content), times=3
)
chat_completion_stream_content = retry(
pipeline(chat_completion_stream_commit, retry_timeout, stream_out_chunk, chunks_content),
times=3,
)
chat_completion_call = retry(
pipeline(chat_completion_stream_commit, retry_timeout, chunks_call), times=3
)
chat_completion_no_stream_return_json = retry(
pipeline(chat_completion_stream_commit, retry_timeout, chunks_content, content_to_json), times=3
)
chat_completion_stream = exception_handle(
retry(
pipeline(
chat_completion_stream_commit,
retry_timeout,
parallel(chunks_content, chunks_call),
to_dict_content_and_call,
),
times=3,
),
lambda err: {"content": None, "function_name": None, "parameters": "", "error": err},
)