workflows/unit_tests/propose_test.py
2024-01-18 22:26:27 +08:00

108 lines
3.1 KiB
Python

import json
import os
import sys
from functools import partial
from typing import List
from minimax_util import chat_completion_no_stream_return_json
from model import FuncToTest, TokenBudgetExceededException
from openai_util import create_chat_completion_content
# from prompts import PROPOSE_TEST_PROMPT
from prompts_cn import PROPOSE_TEST_PROMPT
from tools.tiktoken_util import get_encoding
MODEL = "gpt-3.5-turbo-1106"
# MODEL = "gpt-4-1106-preview"
ENCODING = "cl100k_base"
TOKEN_BUDGET = int(16000 * 0.9)
def _mk_user_msg(
user_prompt: str,
func_to_test: FuncToTest,
chat_language: str,
) -> str:
"""
Create a user message to be sent to the model within the token budget.
"""
encoding = get_encoding(ENCODING)
func_content = f"function code\n```\n{func_to_test.func_content}\n```\n"
class_content = ""
if func_to_test.container_content is not None:
class_content = f"class code\n```\n{func_to_test.container_content}\n```\n"
# Prepare a list of user messages to fit the token budget
# by adjusting the relevant content
relevant_content_fmt = partial(
PROPOSE_TEST_PROMPT.format,
user_prompt=user_prompt,
function_name=func_to_test.func_name,
file_path=func_to_test.file_path,
chat_language=chat_language,
)
# 1. func content & class content
msg_1 = relevant_content_fmt(
relevant_content="\n".join([func_content, class_content]),
)
# 2. func content only
msg_2 = relevant_content_fmt(
relevant_content=func_content,
)
prioritized_msgs = [msg_1, msg_2]
for msg in prioritized_msgs:
token_count = len(encoding.encode(msg))
if token_count <= TOKEN_BUDGET:
return msg
# Even func content exceeds the token budget
raise TokenBudgetExceededException(
f"Token budget exceeded while proposing test cases for <{func_to_test}>. "
f"({token_count}/{TOKEN_BUDGET})"
)
def propose_test(
user_prompt: str,
func_to_test: FuncToTest,
chat_language: str = "English",
) -> List[str]:
"""Propose test cases for a specified function based on a user prompt
Args:
user_prompt (str): The prompt or description for which test cases need to be generated.
function_name (str): The name of the function to generate test cases for.
file_path (str): The absolute path to the file containing the target function for which
test cases will be generated.
Returns:
List[str]: A list of test case descriptions.
"""
user_msg = _mk_user_msg(
user_prompt=user_prompt,
func_to_test=func_to_test,
chat_language=chat_language,
)
model = os.environ.get("LLM_MODEL", MODEL)
content = chat_completion_no_stream_return_json(
messages=[{"role": "user", "content": user_msg}],
llm_config={
"model": model,
"temperature": 0.1,
},
)
cases = content.get("test_cases", [])
descriptions = []
for case in cases:
description = case.get("description", None)
if description:
descriptions.append(description)
return descriptions